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1. Introduction

Today's society’s problems require quick and effective solutions. The expansion
of urban agglomerations is a well-known problem (Wei et al., 2023), and rapid
population growth has a strong impact on the environment ("Population growth"). All
this has led to the need to develop better methods of managing resources and
emergency situations in urban areas. Such methods can be developed based on 3D
models of cities, generated from quality geospatial data.

Recent research indicates that artificial intelligence simplifies the process of
extracting geospatial data needed for 3D modelling, either based on point clouds or
photogrammetric images. Also, virtual reality can be an effective framework for
visualizing and managing the obtained models.

1.1. Motivation

Analyzing the current literature regarding this topic, | found that although there
are many articles addressing the subject of 3D spatial modelling, they do not propose
a complete workflow that analyzes the data from the perspective of the specific
characteristics of the area and which also includes an efficient way of distributing and
visualizing these models. Virtual reality and augmented reality are evolving
technologies and can offer new perspectives in managing current problems that the
society is facing.

1.2. Objectives and Purpose

The purpose of the doctoral thesis is to obtain the 3D models of buildings through
an optimal workflow, and also to distribute and visualize these models, in order to
increase the efficiency of their use. Thus, within the doctoral thesis, different
geospatial data acquisition technologies will be analyzed at theoretical level and
different 3D spatial modelling techniques will be tested, the study area being Baia
Mare city.

The objectives of the PhD thesis are the analysis and comparison of methods for
point cloud classification, the analysis and comparison of methods for extracting
buildings footprints based on photogrammetric images, and the study of the
possibilities of generating, distributing and visualizing 3D models of the buildings.
After making this comparisons, an optimal workflow for the intended purpose will be
proposed. Such a workflow can be further implemented by authorities or other
interested persons.

1.3. The Structure of the PhD Thesis

The doctoral thesis is structured in six chapters.
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In Chapter 1 — Introduction the importance of the subject, the motivation for the
research, the objectives and purpose of the thesis and the structure of the thesis are
presented.

Chapter 2 - State of the Art includes examples of 3D city models and information
on standardisation of 3D models, CityGML standards in particular. Topics such as
Smart City, BIM (Building Information Model) and Digital Twin are addressed and the
importance of using virtual reality and augmented reality in visualizing 3D models of
cities is highlighted. In addition, the possibility of using open-source geospatial data
in 3D modelling is also analyzed.

Chapter 3 — Geospatial Data Acquisition Methods includes the analysis of
geospatial data acquisition methods through airborne, terrestrial and mobile laser
scanning and examples of laser scanning systems and workflow in laser scanning are
presented. Moreover, the chapter includes information about methods of geospatial
data acquisition through aerophotography, types of photogrammetric systems,
examples of photogrammetric cameras and also the workflow in capturing
photogrammetric images. At the end of the chapter, the instruments with which the
geospatial data used in the case study of the PhD thesis were acquired are presented.

Chapter 4 — Spatial Modelling Techniques presents different methods for
classifying LiDAR (Light Detection and Ranging) point clouds and extracting buildings
footprints based on photogrammetric images, focusing on the use of convolutional
neural networks. 3D spatial modelling based on Street-View images is also mentioned.

Chapter 5 — The Case Study covers point cloud classification, buildings footprints
extraction, obtaining the 3D models and publishing and visualising 3D city models. For
the point cloud classification, ArcGIS Pro and Bentley Microstation Terrascan
software products were used and also a DL (Deep Learning) model trained for that
area. At the end, the results were compared. The buildings footprints were extracted
by three methods: using a DL model from ArcGIS Online, using a trained DL model
specific to the study area, and from the LiDAR point cloud, and finally the results were
compared. A comparison was also made with the footprint of a building exported from
eTerra. 3D buildings models were generated in ArcGIS Pro and CityEngine. Modelling
in CityEngine also involved advanced modelling of building facades, using the CGA
(Computer Generated Architecture) programming language. A method for generating
the city's 3D model based on open-source data was also presented. At the end of the
chapter, methods for distributing and visualizing the 3D models obtained through
ArcGIS Online and a visualization application in a VR (Virtual Reality) environment were
presented and analyzed.

Chapter 6 - General Conclusions, Original Contributions and Perspectives
contains the highlighting of original contributions found in the doctoral thesis, general
conclusions on the results obtained and prospects for further research in the future.
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2. State of the Art

2.1. 3D City Models and the ,Smart City"” Concept

A 3D model of the city is a three-dimensional geometric representation of urban
objects and structures, especially buildings, which can be used in numerous
applications, such as visibility analysis, energy demand estimation, shadow
estimation, utility network management, energy potential estimation, 3D cadastre,
infrastructure planning, sound propagation (Biljecki et al., 2015), emergency response
(Gradinaru et al,, 2022b), etc. A semantic 3D model of the city is a model that
integrates the attributes of the objects, as well as different relationships between
them. The semantic enrichment of 3D city models is a process that involves adding
new information to an existing model to better connect it to the surrounding reality
(Billen et al., 2014).

Standardising 3D city models enables data exchange and interoperability
between them. CityGML standards, which define a conceptual model for representing
3D models of cities, are used to describe the complexity of building geometries
(Biljecki et al., 2014) or the proximity between a 3D model of an object and the object
itself (Tang et al., 2020).

Some examples of 3D city models can be the 3D BAG ("3D BAG Viewer"), a
dataset containing 3D models of the buildings in the Netherlands, the 3D models of
Helsinki city ("Helsinki 3D", 2023), or the Boston city model ("About 3D | Boston
Planning & Development Agency").

The concept of "Smart City" has emerged as a solution for urban sustainability
(Cai et al., 2023). Rapid population growth and migration from rural to urban areas
have led to increased resource consumption, space requirements and pollution, and
in this context, information and communication technologies integrated into an
accessible infrastructure with available renewable resources, designed to limit
consumption, can enable sustainability and embody the concept of "Smart City" (Liu
et al.,, 2022). Geospatial data supports the smart city concept, providing information
about location, neighborhoods, objects, networks, and accuracy (Guler and
Yomralioglu, 2022).

2.2. Building Informational Model (BIM) and the "Digital Twin”
Concept

The Building Informational Model is a digital representation of the physical and
functional characteristics of a building (National Institute of Building Sciences
buildingSMART alliance, 2015), being used in situations such as building structures
monitoring (Xu et al., 2023a) or emergency evacuations planning (Xu et al., 2023b).

The concept of "Digital Twin" (DT) is a probabilistic simulation, which faithfully
describes the state of the correspondent in reality, using both real-time data and
historical data related to the building (Schrotter and Hiirzeler, 2020). The difference

6
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between BIM and DT is that while BIM provides static data, DT uses sensors and real-
time data (Attaran and Celik, 2023).

2.3. Using Virtual Reality and Augmented Reality in Visualizing
the 3D City Models

Cecotti (2022) defines virtual reality as a simulated experience. According to Li
et al. (2022), virtual reality is an interface based on immersion, interaction and
imagination, and the application of this technology in the urban environment can help
manage 3D modelling of the city and virtual planning of certain projects.

Wang et al. (2018) propose a GIS analysis platform in VR, which serves for spatial
analysis and visualization of 3D models and concluded that the 3D model visualization
and analysis platform is a useful tool for both social service agencies and citizens,
being used in exploring and analyzing city-related data directly.

While VR is a completely virtual environment and requires special glasses for
visualization, augmented reality (AR) integrates the real world and virtual
representations and can be accessed without special glasses, via a screen ("What's
the Difference Between AR and VR?" 2020).

2.4. Open-source Geospatial Data

In a study conducted by Badea & Badea (2022), the usefulness of open geospatial
data is emphasized, their characteristics are analyzed and a correlation with existing
standards in the field is made. Initiatives such as OSM (Open Street Map), Wikimapia,
data sources and tools such as those provided by NASA (National Aeronautics and
Space Administration), Earth Observation, Copernicus Land Monitoring Service,
Sentinel and also data provided by the INSPIRE directive were hilighted.

Taking into account the situation in Romania, several sources of geospatial data
can be mentioned. ANCPI (National Agency for Cadastre and Real Estate) provides,
through a geoportal, the situation of the buildings registered in the currently existing
land book, as well as the existing buildings on the land in question ("Imobile eTerra -
Public"). The TopRO50 plan, containing the vectorized buildings footprints, is provided
by ANCPI and can be downloaded. Other data made available by ANCPI through the
geoportal are: map sheets at 1:50 000 scale or data from the LAKI Il project (Land
Administration Knowledge Improvement). OSM (Open Street Map) is a digital
representation of the entire world built by volunteers ("About OpenStreetMap -
OpenStreetMap Wiki") and contains open data obtained from measurements,
photogrammetric images or governmental data.
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2.5. Conclusions

This chapter analyzed the current state of the art regarding 3D models of cities
and the concept of "Smart City", the Building Informational Model (BIM) and the
concept of "Digital Twin", the use of virtual reality and augmented reality in visualizing
3D models of cities and open-source geospatial data that can lay the groundwork for
3D spatial modelling.

3D models of cities have proven their utility in many areas, and CityGML
standards help increase interoperability between different models. Thus, various
standards have been defined, such as CityGML standards, which highlight five levels
of detail. 3D city models standardisation allows data exchange between them,
contributing to increasing the efficiency of the spatial modelling process.

The data acquisition technique and the level of detail of the models shall be
chosen according to the field of use of the obtained model.

The ,Smart City” concept has led to increased sustainability in urban
environments and better resource management. Constantly changing urban areas
require a virtual environment that allows the analysis of different scenarios in terms
of resource consumption, space requirements or pollution levels. Such an
environment also offers possibilities for planning and creating a comfortable and
sustainable urban environment.

3D models of cities such as 3D BAG, Helsinki 3D, 3D model of Boston city or 3D
Virtual Singapore model, which also adopts the concept of ,Smart City”, were
exemplified. Thus, it can be concluded that 3D models of cities can show their
evolution over periods of time and can form the basis of various analyses related to
energy, water consumption, heating, electricity or calculations of solar energy
potential.

BIM and DT concepts use both real-time and historical building data, and bringing
them into a GIS environment would help improve the entire 3D spatial modelling
process.

Virtual reality and augmented reality support 3D modelling and contribute to
improving the visualization of 3D models and their use, through virtual planning of
certain projects. In addition, a virtual 3D model of the city is easier to visualize and
understand by the general and non-specialist public. Therefore, | can conclude that
virtual reality and augmented reality can significantly contribute to increasing the
efficiency of the implementation of projects that involve multiple fields of applicability.

The basis for generating 3D models of cities can also be open-source geospatial
data. Compliance with existing standards in the field is very important for this data to
be used in an efficient way. Data such as those from OSM, data provided by NASA,
Earth Observation, Copernicus Land Monitoring Service, Sentinel, data provided by the
INSPIRE directive and also data made available by ANCPI were highlighted.
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3. Geospatial Data Acquisition Methods

A first step towards obtaining 3D models is represented by the acquisition of
geospatial data. Laser scanning and photogrammetry are the two main technologies
for high-quality geospatial data acquisition (Figure 3.1).

Figure 3.1. Examples of Geospatial Data Acquired for the Spatial Representation
of Buildings (a.3D representation - capture taken in ArcGIS Pro program, data
imported from ArcGIS Online Portal, b.LiDAR point cloud - capture taken in ArcGIS
Pro software, c.images taken with a photogrammetric camera, within the ,Cornel
&Cornel Topoexim” company)

3.1. Geospatial Data Acquisition Using Laser Scanning

3.1.1. Aerial Laser Scanning

» A . = B

Figure 3.2. Point Cloud Obtained from Airborne aser Scanning
3.1.2. Terrestrial Laser Scanning

3.1.3. Mobile Laser Scanning
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3.2. Geospatial Data Acquisition through Photogrammetry
3.2.1. The Fundamental Principle of Photogrammetry

3.2.2. Photogrammetric Images Classification

3.2.3. Photogrammetric Systems

» Nadiral photogrammetric cameras;
» Oblique photogrammetric cameras.

3.3. Geospatial Data Acquisition for 3D City Model Generation

Figure 3.3. Iight Plan

The chosen study area is in Baia Mare, and the geospatial data were acquired
during two flights (Figure 3.3), the first with a duration of 3h49m and the second with
a duration of 2h45m.

For the acquisition of the geospatial data, a system consisting of a RIEGL VQ-
780ii-S laser scanner, two Phase One photogrammetric cameras - P1-iXM-RS150F and
P1-iXM-RS100F and a GNSS/INS AEROcontrol-ll navigation system was used,
mounted on board of a Tecnam P2006T drone.

3.4. Conclusions

A first step towards obtaining 3D models is represented by the acquisition of
geospatial data. The quality and actuality of geospatial data is an important factor in
accurate digital 3D modelling.

One method of geospatial data acquisition is laser scanning, which can be
airborne, ground, or mobile. In this chapter | presented the main components of
scanning systems and the operation mechanism of a laser scanner. In addition to the

10
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scanning system, it is essential to have a reference GNSS station for differential
positioning on the ground.

For airborne laser scanning, examples of modern scanning systems such as
Leica CityMapper-2 and the RIEGL VQ-780ii-S Laser Scanner were highlighted.

The workflow in airborne laser scanning consists of study flight planning, study
flight, and data processing. In terms of data processing, the automatic classification
of the point cloud is the main challenge, due to the complex structures of the objects.
The latest research in the field is based on machine learning algorithms such as SVM,
Adaboost, Random Forest, Markov Random Field or CRF (Conditional Random Field).
The latter proved to be more effective because it solves the problem of contextual
information. In addition, recent research discusses the use of convolutional neural
networks in the classification of point clouds, based on advanced DL models.

Terrestrial laser scanning allows us to obtain point clouds with a higher density
than those obtained from airborne laser scanning. Various terrestrial laser scanners,
such as Leica ScanStation P50 and Trimble TX8, as well as the workflow in terrestrial
laser scanning were presented.

Mobile laser scanners integrate navigation technologies without the need for any
other information, such as those provided by ground control stations. The possibilities
of mobile laser scanning involve the "stop-and-go" observation method, in which scans
are performed in a static mode, with the vehicle changing its position after each scan,
and the "on-the-fly" observation method, in which the vehicle moves along a trajectory
without stopping, and the laser scanner scans continuously. It can be concluded that
the "on-the-fly" method is suitable for projects with a short execution time, as it has
the advantage of a shorter scanning time, but each point collected is reffered to an
individual coordinate system, unlike the "stop-and-go" observation method, where
each point cloud is defined in the scanner's local coordinate system.

Another geospatial data acquisition technique is aerophotography. This chapter
presents classifications of photogrammetric images and different types of
photogrammetric systems, which can be nadiral (e.g. Vexcel UltraCam Eagle Mark 3
or Leica DMC II) or oblique (e.g. Vexcel UltraCam Osprey, Leica RCD30 Oblique, IGI
Quattro DigiCAM Oblique). The main steps in taking photogrammetric images were
presented and the importance of ground control points, which need to be easy to
identify and determine by GNSS measurements, was emphasized. The characteristics
of digital images play an important role in obtaining quality geospatial data based on
orthorectified images. It can be concluded that especially a high spatial resolution of
the image leads to obtaining geospatial data with high accuracy.

11
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4. Spatial Modelling Techniques

4.1. LiDAR Point Cloud classification through Automatic

Classification Methods

To obtain a 3D city model based on LiDAR data, the point cloud needs to be

classified accordingly. There are numerous software products that enable this. One of

these is ArcGIS Pro, which uses the classification model defined by the American
Society for Photogrammetry and Remote Sensing (ASPRS), which is structured
according to Table 4.1 ("Change LAS Class Codes (3D Analyst)—ArcGIS Pro |

Documentation”).

Table 4 1. Point Classes Used in ArcGIS Pro

Classification Code Class
0 Never classified
1 Unassigned
2 Ground
3 Low Vegetation
4 Medium
Vegetation
5 High Vegetation
6 Building
7 Low Point
8 Key model /
Reserved
9 Water
10 Rail
11 Road Surface
12 Overlaps /
Reserved
13 Wire — Guard
14 Wire — Conductor
15 Transmission
Tower
16 Wire — Connector
17 Bridge Deck
18 High Noise
19-63 Reserved for
ASPRS definitions
Reserved for user
32-255 definitions

12
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4.2. Utilizing Artificial Intelligence for LiDAR Point Cloud
Classification

Artificial Intelligence (Al) is a technology that uses a computer to simulate human
intelligence and trains the computer to further learn human behaviors for decision-
making (Zhang & Lu, 2021).

Neural networks are a concept of artificial intelligence, inspired by the human
brain, that replicate how human neurons transmit signals to each other. They are
composed of nodes layers: an input layer, one or more hidden layers, and an output
layer. Convolutional neural networks differ from other neural networks by their
superiority in image, speech or audio input data and by the three main layers: the
convolutional layer, the grouping layer and the fully connected layer. There are
different types of convolutional neural network architectures, such as AlexNET,
VGGNet, GooglLeNet, ResNet, ZFNet ("What are Convolutional Neural Networks?").

4.3. 3D Spatial Modelling Based on Photogrammetric Images

The image classification process involves applying specific rules, designed
based on spectral or textural characteristics of the image, to assign labels to groups
of pixels or vectors in that image. Classification can be supervised, by manually
selecting training data and assigning it to the appropriate class, or unsupervised,
which uses specific algorithms for fully automatic image classification (Jog and Dixit,
2016).

The generation of buildings footprints can be achieved by training a DL model
based on a MaskRCNN architecture ("Automated Building Footprint Extraction using
Deep learning"), developed from the need to improve techniques for detecting objects
in images. In order to obtain the most regular forms of buildings footprints, there is
the possibility of geoprocessing that allows the use of a polyline compression
algorithm to correct their distortions ("Regularize Building Footprint (3D Analyst)—
ArcGIS Pro | Documentation”).

4.4. 3D Spatial Modelling Based on Street-View Imagery

Another source of data for 3D spatial modelling of cities can be street-view
images. Biljecki & Ito, 2021 conducted a study on the use of street-view imagery in
urban analysis and GIS and concluded that most existing models rely mainly on
Google Street View, but other companies' focus on street-view products can open up
new horizons and improve data, including greater coverage and images of building
interiors.

13
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4.5. Conclusions

In this chapter, different spatial modelling techniques have been analyzed. Data
processing involves classifying the LiDAR point cloud and extracting geometric
elements from photogrammetric images, in order to obtain the 3D models of the
buildings.

Recent research has led to the demonstration of the effectiveness of Al
involvement in LiDAR point cloud classification. Using a PointCNN convolutional
neural network involves preparing a training data file and a validation data file. The
more data these files present, the greater the accuracy of the trained classification
model.

Buildings footprints can also be extracted from photogrammetric images. Image
classification can be supervised, by manually selecting data and assigning it to the
appropriate class, or unsupervised, which uses specific algorithms for fully automatic
image classification. Training a DL model can be based on a MaskRCNN architecture,
used to detect objects in the image. Therefore, the training data should be a file with
the previously determined buildings footprints. By training such a model for a specific
area, the buildings footprints can be obtained with higher accuracy than using an
existing model, trained for another type of area. The more data the training data file
contains, the higher the accuracy of the model obtained.

Another data source for 3D spatial modelling of cities can be street-view images,
by training specific DL models, but, due to the nature of these images, the accuracy is
lower than the models obtained through the methods presented above.

In conclusion, | proposed the workflow in Figure 4.1 to obtain the 3D model of a
city, and in the case study different working methods will be analyzed and compared.

LiDAR Point Cloud
Classification
Geospatial Data .
Acquisition and 3D City Mjadel
Preliminary Data Generation
Processing — :
Buildings Footprints

Extraction Based on
Photogrammetric
Images

Figure 4.1. Workflow for Obtaining 3D City Models

14
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5. Case Study

5.1. Point Cloud Classification

5.1.1. Study Area

The chosen study area is in Baia Mare (Figure 5.1).

Figure 5.1. Study Area

5.1.2. Point Cloud Classification through autmatic methods in ArcGIS
Pro software

The file in *.LAS (LASer) format contains a total of 44,913,903 points. The points
belonging to the classes Ground, Building and Low, Medium and High Vegetation were
classified. The classification results can be found in Figures 5.2, 5.3 and 5.4.

Legend

Ground
Building

Low Vegetation
Medium Vegetation
High Vegetation
Low Noise

Figure 5.2. Classified Point Cloud
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ltem Category Pt_Cnt Percent Z Min | Z_Max
1_Unclassified ClassCodes 32197 0.07 | 205.83 | 248.08
2_Ground ClassCodes 7735046 17.22 | 201.08 2229
3_Low_Vegetation ClassCodes 11271865 251 20117 | 227.26
4 Medium_Vegetation = ClassCodes 9548292 21.26 | 20738 243.22
5_High_Wegetation ClassCodes 81217 018 232,09 26441
6_Building ClassCodes 10161344 22,62 | 20255 | 25891
7_Low_Point(noise) ClassCodes 6083682 13.55 | 193.85 | 222.66
14_Reserved ClassCodes 43 0| 21673 | 22242
18 _Reserved ClassCodes 217 0| 202,03 | 27455

Figure 5.3. Point Cloud Classification Results with ArcGIS Pro Software

Point Cloud Classified with ArcGlS Pro

1_Unclassified = 2 Ground 3 _Low Wegetation
5 4_Medium_Vegetation m 5_High_Vegetation ® & Building
B 7 _Low Point ® Other

Figure 5.4. Point Cloud Classification Results Graph

By using this method, some points have been misclassified. The main error in
classification was the classification of some building elements as vegetation points
(Figure 5.5). These errors require manual intervention.

For a larger volume of data, | proposed using ArcGIS Pro ModelBuilder. | created
the model in Figure 5.6., which follows the point cloud classification steps outlined
earlier ("Use ModelBuilder—ArcGIS Pro | Documentation”).

16
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7 Classify LAS
2CE e " Gound ———>{DOC_15las (2)

Y

Classify LAS
Building EE— 0

\

Classify LAS By
Height » DOC_15.las (4)

Figure 5.6. Point Cloud Classification Model in ArcGIS Pro ModelBuilder

Another way to make the point cloud classification process more automatic in
ArcGIS Pro is to use ArcGIS API (Application Programming Interface) for Python, a
programming language used to visualize and analyze data in a GIS environment
("Overview of the ArcGIS API for Python"), by using the following code sequence:

import arcpy
def Model_Lidar_PC_Classification(): # Model_Lidar_PC_Classification

# To allow overwriting outputs change overwriteOutput option to True.
arcpy.env.overwriteOutput = False

# Check out any necessary licenses.
arcpy.CheckOutExtension("3D")

DOC_15_las = "DOC_15.las"

# Process: Classify LAS Ground (Classify LAS Ground) (3d)

DOC_15 las 2 = arcpy.ddd.ClassifyLasGround(in_las_dataset=DOC_15 las,
method="CONSERVATIVE", reuse_ground="RECLASSIFY_GROUND", dem_resolution="",
compute_stats="COMPUTE_STATS", extent="23.5528862297105 47.6563134028331

23.5716906627965 47.6633591935169", boundary="", process_entire_files="PROCESS_EXTENT",
update_pyramid="UPDATE_PYRAMID")[0]

# Process: Classify LAS Building (Classify LAS Building) (3d)
DOC_15 las_3_ = arcpy.ddd.ClassifyLasBuilding(in_las_dataset=DOC_15 las_2_, min_height="2

Meters", min_area="6 SquareMeters”, compute_stats="COMPUTE_STATS",
extent="23.5528862297105 47.6563134028331 23.5716906627965 47.6633591935169",
boundary="", process_entire_files="PROCESS_EXTENT", point_spacing="",
reuse_building="RECLASSIFY_BUILDING",

photogrammetric_data="NOT_PHOTOGRAMMETRIC_DATA", method="STANDARD",
classify_above_roof="NO_CLASSIFY_ABOVE_ROOF", above_roof_height="1.5 Meters",
above_roof code=6, classify_below_roof="CLASSIFY_BELOW_ROOF", below_roof code=6,

update_pyramid="UPDATE_PYRAMID")[0]

17



Eng. GRADINARU Anca Patricia — Contributions to the Spatial Representation of Buildingg

# Process: Classify LAS By Height (Classify LAS By Height) (3d)

DOC_15 las 4 = arcpy.ddd.ClassifyLasByHeight(in_las_dataset=DOC_15 las 3 ,
ground_source="GROUND", height_classification=[[3, 5], [4, 25], [5, 50]], noise="ALL_NOISE",
compute_stats="COMPUTE_STATS", extent="23.5528862297105 47.6563134028331

23.5716906627965 47.6633591935169", process_entire_files="PROCESS_EXTENT", boundary="",
update_pyramid="UPDATE_PYRAMID")[0]

if _name__=='_main__"
# Global Environment settings
with

arcpy.EnvManager(scratchWorkspace=r"D:\Doctorat\3_An_IIN5_Teza\4_1 Clasificarea_norului_de p
uncte\ArcGIS\V2\V2\model_builder\MyProject74\MyProject74.gdb",
workspace=r"D:\Doctorat\3_An_IIN5_Teza\4d_1 Clasificarea_norului_de_puncte\ArcGIS\V2\V2\model
_builden\MyProject74\MyProject74.gdb"):

Model_Lidar_PC_Classification()

5.1.3. Point Cloud Classification using Bentley Microstation Terrascan
Software Product

With the Bentley Microstation Terrascan software product, points belonging to
the classes Ground, Building, Low Vegetation, Medium Vegetation and High Vegetation
were classified. The classification results can be found in Figures 5.7, 5.8 and 5.9.

Legend

m Ground

B Building

3 Low Vegetation
B Medium Vegetation
B High Vegetation

Figure 5.7. Point Cloud Classified with Bentley Microstation Terrascan Software
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All points 44913 903 193.85 274.55
Active points 44913 903
MNeighbour points 0
Class Description Count Min Z Max Z
1 Default 487771 20115 261.70
2 Ground 8537934 201.02 222.73
3 Low vegetation 11773 888 20116 227.29
4 Medium vegetation 10034 580 207.38 243.07
5  High vegetation 96 482 231.36 264.41
6  Building 9591 490 201.61 260,12
7 Low point 1556 193.85 22213
8  Model keypoints 0 - -
14 Class 14 43 216.73 222,42
18 Class18 199 202,03 27455

Figure 5.8. Point Cloud Classification Results with Bentley Microstation
Terrascan Software

Point Cloud Clazsified with Bentley
Microstation Terragcan

w J Liow_Piodnt o Ty

Figure 5.9. Point Cloud Classification Results Graph

As far as classification errors are concerned, the most common error was the
classification of walls as vegetation elements. Also, another common error was the
classification of ground or low vegetation elements in the proximity of buildings as
elements of the buildings. These errors can be seen in Figure 5.10 and require manual
intervention.

Figure 5.10. Building Walls Cassified as Vegetation Elements

5.1.4. Extracting Data from Point Clouds Using Convolutional Neuronal
Networks

Since convolutional neural networks are data-driven models, the effectiveness of
these models in their application domains is given by how well the training data
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represent the area (Kattenborn et al., 2021). Next, the point cloud will be classified
with DL algorithms and convolutional neural networks. When training a PointCNN
model, the point cloud is divided into blocks of points containing a certain number of
elements ("Point cloud classification using PointCNN").

Two file types are required to train a PointCNN model: a training data file and a
validation data file. These files were created using ArcGIS Pro's existing automatic
classification methods, with the classification errors manually corrected. In the end, |
obtained the two datasets (Figure 5.11), with a total of 68% training data and 32%
validation data.

= Validation dataset
Training dataset

Figure 5.11. Training and Validation Datasets

The training and validation data have been prepared and the result can be found
in Figures 5.12 and 5.13.

Number of Blocks

0 20000 40000 60000 80000 100000 120000
Point Count

Figure 5.12. Histogram of Point Blocks in Training Data
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To train the model, | used the Python programming language in ArcGIS Pro and chose

124

Number of Blocks

0-

0

20000 40000 60000 80000 100000 120000

Point Count

Figure 5.13. Histogram of Point Blocks in Validation Data

20 training epochs:

from arcgis.learn import export_point_dataset, prepare_data, PointCNN
output_path=r'D:\Doctorat\3_An_IIN5_Teza\4_1_Clasificarea_norului_de_puncte\Dee
p_learning_ArcGIS\V4\Model_train\Model_training_2\export2.pctd’
data = prepare_data(output_path, dataset_type='PointCloud’, batch_size=2)
pointcnn = PointCNN(data)
pointcnn.fit(20)

The results of model training from each epoch can be seen in Figure 5.14 and are as

train_loss valid_loss accuracy precision recall f1

it follows:
epoch

0 2.017702
1 1.719348
2 1.416687
3 1.066752
4 0.927440
5 0.834291
6 0.800354
7 0.750165
8 0.731268
9 0.716202
10 0.682229
11 0.669484
12 0.665540
13 0.656838
14 0.641315
15 0.629172

1.939532
1.835655
2.675217
6.231255
1.815611
1.367668
0.895765
0.918152
0.801657
0.735054
0.697355
0.692361
0.699732
0.720050
0.680481
0.688940

0.420038
0.478760
0.428926
0.305902
0.484227
0.560290
0.669276
0.672131
0.690178
0.708160
0.720835
0.726409
0.733367
0.721775
0.734322
0.728866

0.166875
0.238613
0.315331
0.283549
0.369048
0.418993
0.483309
0.482960
0.510082
0.528342
0.539543
0.540671
0.561855
0.553432
0.566254
0.562753

0.162660
0.218548
0.270709
0.239897
0.326948
0.370895
0.407822
0.421462
0.410125
0.408976
0.431926
0.437687
0.458471
0.428550
0.447624
0.439414

time
0.141807
0.173044
0.202408
0.155649
0.266849
0.317546
0.387601
0.395064
0.402040
0.406577
0.435531
0.441238
0.464235
0.431470
0.459272
0.450087

15:11
14:07
13:59
13:58
13:58
13:58
13:56
13:57
13:57
14:02
14:24
14:08
13:55
13:56
13:55
14:10
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16 0.631952 0.664263 0.733555 0.574948 0.446280 0.458066 13:58

17 0.612834 0.662378 0.736640 0.574113 0.451032 0.462522 13:48

18 0.610737 0.691800 0.730252 0.569812 0.447568 0.456362 13:55

19 0.603156 0.673858 0.732018 0.573324 0.442920 0.451286 13:48
PointCNN

Backbone: None
Learning Rate: 4.7863¢-04

Training and Validation loss

6 — Tain
—— Validation

3000 4000 5000 6000 7000
Batches processed

0 1000 2000

Sample Results

Ground Truth / Predictions (Displaying randomly sampled 20000 points.)

Figure 5.14. DL Model Training Results

Next, | classified the point cloud with the trained model and obtained the results from
Figures 5.15,5.16 and 5.17.
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Figura 5.15. Point Cloud Classification Results with the DL Trained Model

Field: Selection: T Switch

ltem Category Pt_Cnt Percent 7 Min 7_Max
12 Al Returns 44913903 100 | 193.85  274.55
13 | 2_Ground ClassCodes 18335133 40.82 | 2010 24331
14 | 3_Low_Vegetation ClassCodes 6468741 144 | 20125 254.58
15 | 4_Medium_Vegetation | ClassCodes 6114374 13.61 205.5 | 264.25
16 6_Building ClassCodes 13606156 3049 201,71 26441
17 | 7_Low_Point(naise) ClassCodes 220791 0.49 | 193.85 2264
12 | 18 Reserved ClassCodes 165 0 20191 274355
19 | 19 _Reserved ClassCodes 78523 017 | 20194 | 27283
20 | Return_Mo Attributes <Mull> | <Null>  <MNull> | <Null>

Figure 5.16. Point Cloud Classification Results with the DL Trained Model

Point Cloud Classified with
the DL Trained Model

1_Unclassified ® 2} Ground 3_Low Vegetation
1 4 Medium_Vegetation = 5_High_Vegetation = 6 _Building

= 7 Low Point = Other
Figure 5.17. Point Cloud Classification Results Graph
5.1.5. Comparative Study and Conclusions
After classifying the point cloud using the three methods presented above, |

obtained the results from Table 5.1 and Figure 5.18.
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Table 5-1. Point Cloud Classification Results

Bentley
Class/Method ArcGIS Pro Microstation ArcGIS Pro - Trained DL Model
TerraScan
Ground 7,735,046 8,537,934 18,335,153
Low 11,271,865 11,773,888 6,468,741
Vegetation
Medium | ¢ 540990 10,034,580 6,114,374
No. of Vege.tatlon
points High 81217 96,482 .
Vegetation
Building 10,161,344 9,591,490 13,696,156
Low Noise 6,083,682 1,556 220,791
Unclassified - 4,877,731 -

From Table 5.1 it can be seen that by classifying the point cloud with ArcGIS Pro
and Bentley Microstation Terrascan software, | obtained similar results. This is also
due to the fact that similar classification parameters have been chosen for the two
methods. One factor that determined the difference between the numbers of points
assigned to the Building class is that the Bentley Microstation Terra Scan software did
not classify the walls of the buildings, but only their roofs. In Figure 5.19, it can be seen
that the points belonging to the walls of the building were classified as medium
vegetation points, when classified with the Bentley Microstation Terrascan software.
There is also a considerable difference in Ground Points due to the fact that when
classified with ArcGIS Pro software, many of them were classified as noise points,
shown in red in Figure 5.19-a, and when classified with Bentley Microstation Terrascan
software, they remained unclassified, shown in white in Figure 5.19-b.

Comparative Graph of the
Point Cloud Classification Methods
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-; -4 ) < "
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._ 3 ¥
L
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.

¥ Point Cloud Classified with ArcGIS Pro

¥ Point Cloud Classified with Terrascan
Point Cloud Classified with the Trained Deep Learning Model

Figure 5.18. Comparative Graph of the Point Cloud Classification Methods
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b B
in ArcGIS Pro (a.) and Point Cloud Classified
with Bentley Microstation Terrascan (b.) — same building

Regarding the classification of the point cloud with the trained DL model, greater
differences are found compared to the first two methods. Looking at the classified
point cloud (Figure 5.20), it can be seen that many points of medium vegetation have
been classified as building points, and also many points that make up flat surfaces
have been interpreted as building roofs, although they are at ground level (Figure 5.21).

LI i
Gt .t e
SR

Figure 5.20. Point Cloud Classification with the Trained DL Model — same
building found in Figure 5.19

R o

Figure 5.21. Point Cloud Classification with the Trained DL Model

For more complex buildings (Figure 5.22), all three methods proved insufficient
to use a fully automatic classification, with the point cloud requiring manual
intervention each time. The main problem lies in the fact that the irregular shapes of
the roofs make many of their points to be assigned different vegetation classes.

25



Eng. GRADINARU Anca Patricia — Contributions to the Spatial Representation of Buildingg

Figure 5.22. Building Classified Using the DL Trained Model (a.), ArcGIS Pro (b.)
and Bentley Microstation Terrascan Software (c.)

In conclusion, the three point cloud classification methods resulted in similar
results, but the most effective in terms of results and manual error correction
interventions was the use of ArcGIS Pro's automated point cloud classification tools,
which can be more efficient for classifying a larger data volume, such as that utilized
for the case study in the doctoral thesis. In addition to a smaller number of
classification errors, this method also allows you to make the classification process
more automatic, by using the ArcGIS API for Python.

5.2. Buildings Footprint Extraction

5.2.1. Buildings Footprint Extraction Using the DL Algorithm from ArcGIS
Pro

In ArcGIS Living Atlas there are different models for extracting buildings
footprints based on satellite imagery (Gradinaru, 2022). | chose from Living Atlas the
Building Footprint Extraction — USA model, based on a MaskRCNN architecture
implemented using ArcGIS API for Python ("Building Footprint Extraction - USA -
Overview"). The DL model was run on an input raster file to produce a feature class
that will contain the found objects ("Detect Objects Using Deep Learning (Image
Analyst)—ArcGIS Pro | Documentation"). The model is trained to identify the roofs of
the buildings, which will be represented in the form of polygons. In total, 464
geometries were detected. To correct the polygons™ distortions, | used a polyline
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compression algorithm ("Regularize Building Footprint (3D Analyst)—ArcGIS Pro |
Documentation”). Then | removed the overlaps and got a total of 390 geometries. The
results can be found in Figure 5.23.

Figure 5.23. The Results of Extracting Buildings Footprints with the DL Model in
ArcGIS Living Atlas

5.2.2. Training a DL Model in ArcGIS Pro for Building Footprint Extraction
Using Photogrammetric Images

For training the Deep Learning model, | prepared a training dataset consisting of
manually vectorized geometries for 298 buildings (Figure 5.24), which were assigned
class 1 in the corresponding attribute table.

=
| 20 Field: [ Add [H Calculate = Selection: Fm Select By Attributes Eg Switch
AN o OBJECTID* Shape* LAVER Shape_Length Shape Area Class
@ ax 5 285 285 Polygon | BUILDING_FOOTPRINT 44942156 95354718 1
,% 1 s ! 286 286 Polygon  BUILDING_FOOTPRINT 3443643 68044512 1
20 287, 287 Polygon | BUILDING_FOOTPRINT 44617227 118026166 1
VR it 288 288 Polygon  BUILDING_FOOTPRINT 25269639 36083164 1
;‘ e e 289/ | 289 Polygon ' BUILDING_FOOTPRINT 61313964 193.506527 1
200 ;) 200 290 Polygon | BUILDING_FOOTPRINT 40111155 98879195 1
X })@G 3, AT 291 291 Polygon | BUILDING_FOOTPRINT 33.036483 54922212 1
S 2 92 292 Polygon ' BUILDING_FOOTPRINT 1137674 7743777 1
gy & % 293 293 Polygon | BUILDING_FOOTPRINT 36733587 60801108 1
;,a 94/ | 204 Polygon  BUILDING_FOOTPRINT 42048108 76319349 1
2 " 295 295 Polygon | BUILDING_FOOTPRINT 18840046 22017138 1
:}CR} 296 296 Polygon BUILDING_FOOTPRINT 36426775 72114274 1
=" 0 97| | 297 Polygon | BUILDING_FOOTPRINT 20019433 41704403 | 1
208 208 Polygon  BUILDING_FOOTPRINT 14451096 12950163 1

Click to add new row.

Figure 5.24. Training Data

The first step in training the model was to export the training data in RCNN Masks
format ("Export Training Data for Deep Learning (Image Analyst)—ArcGIS Pro |
Documentation”). Next, | converted the vector data into training datasets based on the
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raster image. The result was a set of image chips measuring 256x256 pixels and a set
of metadata files in the specified format. The next step was to train the Deep Learning
model with the data obtained in the previous step. The results of the training during
the 20 epochs were the following:

Start Time: Sunday, April 30, 2023 23:07:32
Learning Rate - slice(4.365158322401661e-06, 4.365158322401661e-05, None)

epoch  training loss validation loss

0 1.1618988513946533 1.2790905237197876
1 1.1265311241149902 0.9537186622619629
2 1.067383885383606 0.8906569480895996
3 1.1501880884170532 0.8541356921195984
4 1.0023037195205688 0.7756800055503845
5 0.9016749858856201 0.7570561170578003
6 0.7635862231254578 0.731697678565979
7 0.8380852341651917 0.6944260597229004
8 0.7321746349334717 0.6711621284484863
9 0.9564940929412842 0.6712456345558167
10 0.7845675945281982 0.6268543004989624
11 0.656985342502594 0.5794755816459656
12 0.8817278146743774 0.607085108757019
13 0.582132875919342 0.5567061305046082
14 0.6240612864494324 0.5660204887390137
15 0.5917166471481323 0.5256257057189941
16 0.5708335638046265 0.5232657194137573
17 0.5908197164535522 0.5226365923881531
18 0.5473408102989197 0.5186260342597961
19 0.5487155914306641 0.5161070823669434

{'average_precision_score": {1': 0.8224424088745176}}

Succeeded at Sunday, April 30, 2023 23:32:53 (Elapsed Time: 25 minutes 20
seconds)

Next, | used the trained model to obtain the footprints of the buildings, and then
corrected the distortions of the polygons. | obtained a total of 1262 polygons. The last
step was to remove overlapping areas and to merge overlapping geometries into a
single geometry. | obtained a total of 628 polygons and the result can be found in
Figure 5.25.
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Figure 5.25. Buildings Footprints Generated with the Trained DL Model

For managing a larger number of photograms, | proposed using ArcGIS Pro
ModelBuilder (Figure 5.26).

Detect Objects
—————» UsingDeep ——{ DOC_15_Building_FP
Learning

Regularize
Building -~ > DOC_15_Building_FP_Regulariz
Footprint

Dissolve Output Feature
Boundaries L Class

Figure 5.26. Buildings Footprints Extraction Model in ArcGIS Pro Model Builder

ArcGIS API for Pyhthon can be used to make the buildings footprints extraction
process automatic, with the following code sequence:

import arcpy
def Model(): # Model

# To allow overwriting outputs change overwriteOutput option to True.
arcpy.env.overwriteOutput = False

# Check out any necessary licenses.
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arcpy.CheckOutExtension("ImageExt")
arcpy.CheckOutExtension("ImageAnalyst")
arcpy.CheckOutExtension("3D")

arcpy.ImportToolbox(r"c:\program
files\arcgis\pro\Resources\ArcToolbox\toolboxes\GeoAnalytics Desktop Tools.tbx.tbx™)

DOC_15 ecw = arcpy.Raster("DOC_15.ecw")

MODEL_dIpk =
"D:\\Doctorat\\3_An_IIIN\5_Teza\\4 2 Extragerea_amprentelor_la_sol_ale_constructiilor\2_ArcGIS_Pr
o_Deep_Learnin_Trained\\V4 dupa v5\\VA\MODEL\MODEL.dIpk"

# Process: Detect Objects Using Deep Learning (Detect Objects Using Deep Learning) (ia)

DOC_15 Building_FP =
"D:\\Doctorat\\3_An_IIIN\5_Teza\\4_ 2 Extragerea_amprentelor_la_sol _ale_constructilor\1_ArcGIS_Pr
o_Deep_Learning_implementat\vV1\V1.gdb\DOC_15 Building_FP"

arcpy.ia.DetectObjectsUsingDeepLearning(in_raster=DOC_15 ecw,

out_detected_objects=DOC_15_Building_FP, in_model_definition=MODEL_dIpk,
arguments=[["padding"”, "128"], ['batch_size", "4"], ["threshold", "0.9"], ['return_bboxes", "False"],
['tile_size", "512", run_nms="NO_NMS", confidence_score_field="Confidence",
class_value_field="Class", max_overlap_ratio=0,

processing_mode="PROCESS_AS MOSAICKED_IMAGE")
.save(Detect_Objects_Using_Deep_Learning)

# Process: Regularize Building Footprint (Regularize Building Footprint) (3d)

DOC_15 Building_FP_Regulariz =
"D:\\Doctorat\\3_An_IIIN\5_Teza\\4_ 2 Extragerea_amprentelor_la_sol _ale_constructilor\1_ArcGIS_Pr
0_Deep_Learning_implementat\\vV1\\V1.gdb\DOC_15 Building_FP_Regulariz"

arcpy.ddd.RegularizeBuildingFootprint(in_features=DOC_15 Building_FP,
out_feature_class=DOC_15_Building_FP_Regulariz, method="RIGHT_ANGLES", tolerance=1,
densification=None, precision=0.15, diagonal_penalty=1.5, min_radius=0.1, max_radius=1000000,
alignment_feature="", alignment_tolerance="", tolerance_type="DISTANCE")

# Process: Dissolve Boundaries (Dissolve Boundaries) (gapro)

Output_Feature_Class =
"D:\\Doctorat\\3_An_IIIN\5_Teza\\4 2 Extragerea_amprentelor_la_sol _ale_constructilor\1_ArcGIS_Pr
0_Deep_Learning_implementat\V1\\V1.gdb\DOC_15_ Building_FP_Regulariz_DissolveBoundaries"

arcpy.gapro.DissolveBoundaries(input_layer=DOC_15 Building_FP_Regulariz,
out_feature class=Output_Feature_Class, multipart="SINGLE_PART", dissolve_fields="", fields=][],
summary_fields=[])

if _name__=='_ main__"
# Global Environment settings
with

arcpy.EnvManager(scratchWorkspace=r"D:\Doctorat\3_An_IIN5_Teza\d_2_ Extragerea_amprentelor_|
a_sol_ale_constructiilor\1_ArcGIS_Pro_Deep_Learning_implementat\vV1\V1.gdb",
workspace=r"D:\Doctorat\3_An_IIN5_Teza\4 2 Extragerea_amprentelor_la_sol_ale constructiilor\l_
ArcGIS_Pro_Deep_Learning_implementat\V1\V1.gdb"):

Model()
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5.2.3. Buildings Footprint Extraction from the LiDAR Point Cloud

To extract buildings footprints from the LiDAR point cloud, | used ArcGIS Pro
software. The first step was to apply a filter to the already classified point cloud to
only display the points belonging to building class. Next, | created a raster image
whose values reflect statistical information about the point cloud. To even out the

geometries of the buildings and fill in the gaps in the raster image, | used the Elevation
Void Fill function. Finally, | obtained the result from Figure 5.27.
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Figure 5.27. Raster Image of Buildings Footprints Extracted from the LiDAR Point

Cloud

From the resulted raster image, | extracted the polygons of the buildings
footprints. Finally, | corrected the polygons™ distortions. | obtained a number of 545
polygons, and the result can be found in Figure 5.28.

Figure 5.28. Buildings Footprints Generated from the LiDAR Point Cloud
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5.2.4. Comparative Study and Conclusions

The results obtained with the three methods for extracting buildings footprints
can be found in Table 5.2.

Table 5 2. The results obtained with the three methods of extracting the buildings

footprints
No. of
buildings
No. of obtained after
No. Method b.ui.lc.lings eliminating
initially overlaps and
identified unifying
adjacent
buildings
Extracting buildings
1 footprints with the DL 464
model from ArcGIS 390
Living Atlas
Extracting buildings
2 footprints with the 1263 628
trained DL model
Extracting buildings
3 footprints from the 545 545
LiDAR point cloud

In the case of using the trained DL model, it was found that a higher number of
buildings footprints are obtained than with the model implemented in ArcGIS Pro. This
is also due to the fact that there is a better segmentation of the buildings according
to the differences noticed in the roofs. Thus, several adjacent blocks were identified
as different constructions and not the same construction as when using the DL model
implemented in ArcGIS Pro. As a result of joining adjacent geometries and eliminating
overlaps, this difference decreased considerably. When extracting buildings footprints
from the LiDAR point cloud, since generating them is also based on elevation data,
and several adjacent blocks can have the same number of levels and thus the same
height, they have been identified as a single building (Figure 5.29).
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C_

Figure 5.29. Blocks Identified with the DL Model Implemented in ArcGIS Pro (a.), with
the Trained DL Model (b.), and based on the LiDAR Point Cloud (c.)

For more complex buildings, such as the church in Figure 5.30, it is found that in
the case of the model implemented in ArcGIS Pro, it was not classified as a building,
and in the case of using the trained DL model, although identified, the resulting
geometry does not correspond to reality, requiring manual intervention. Also, in the
case of using the LiDAR point cloud, errors may occur, due to improper classification
of points or lack of points in some areas.

C.
Figure 5.30. Church Identified with the DL Model Implemented in ArcGIS Pro (a.),
with the Trained DL Model (b.), and based on the LiDAR Point Cloud (c.)

In image segmentation with the trained DL model, portions of the river were
identified as buildings (Figure 5.31), requiring manual intervention to remove them.

Figure 5.31. River Areas Classified as Buildings
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In order to more effectively evaluate the performance of the studied models, |
made a comparison with the geometry of a building footprint from eTerra. For this, |
chose the rectangular construction in Figure 5.32. Analyzing the differences between
the coordinates of the 4 corners of the building in Table 5.3 and considering the
coordinates of the building footprint in eTerra as the correct value, it can be concluded
that the smallest sum of errors was obtained from the trained DL model.

Table 5.3. Comparison of the Coordinates of the Building Footprint Obtained from
the 3 Described Methods and the Coordinates of the Corresponding Geometry from

eTerra
Coordinates from the DL Model Implemented in ArcGIS Pro
E [m] er. [m] N [m] er. [m]
391540.970 -0.355 685519.900 0.078
391612.020 -0.791 685527.610 -0.807
391613.170 -0.894 685516.290 -1.703
391542.310 -0.269 685508.510 -0.884
S=1-2.310 S=-3.316
Coordinates from the Trained DL Model
E [m] er. [m] N [m] er. [m]
391540.250 -1.075 685520.400 0.578
391613.260 0.449 685529.180 0.763
391614.650 0.586 685517.580 -0.413
391541.640 -0.939 685508.800 -0.594
S=1-0.980 S=0.334
Coordinates from the LiDAR Point Cloud
E [m] er. [m] N [m] er. [m]
391540.010 -1.315 685520.610 0.788
391612.830 0.019 685529.580 1.163
391614.480 0.416 685516.260 -1.733
391541.410 -1.169 685508.160 -1.234
S=|-2.050 S=-1.016
Coordinates from eTerra
E [m] N [m]
391541.325 685519.822
391612.811 685528.417
391614.065 685517.993
391542.579 685509.394
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Figure 5.32. Buildings Identified with the DL Model Implemented in ArcGIS Pro (a.), the
Trained DL Model (b.), the LiDAR Point Cloud (c.), and eTerra (d.)

5.3. Obtaining the 3D Buildings Model

5.3.1. 3D Modelling of the Buildings in ArcGIS Pro

For the 3D modelling of the buildings in ArcGIS Pro, multipatch objects are used.
In this case, | used the buildings footprints obtained from the LiDAR point cloud and
the point cloud classified using the automated classification tools implemented in
ArcGIS Pro with manual corrections of the classification errors. The 3D model
obtained can be found in Figure 5.33.

Figure 5.33. 3D Model of the Buildings — Overview
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Looking closely at the obtained buildings, | noticed that their surface is irregular
(Figure 5.34).

Figure 5.34. 3D Model — Detail View

To solve this problem, | opted for a manual rectification of the buildings
footprints, followed by their extrusion using the Extrusion function, at a height
determined from the LiDAR point cloud, which was noted in the attribute table of the

buildings layer. Thus, 3D models of the buildings with LOD1 were obtained (Figure
5.35).

Figure 5.35. 3D Model of the Buildings Obtained with Extrusion in ArcGIS Pro,
Representation in LOD1

36



Eng. GRADINARU Anca Patricia — Contributions to the Spatial Representation of Buildingg

To represent the buildings in LOD2, roof surfaces for an area were modelled and
textures were applied based on a package of rules from CityEngine. In this case, the
Building Shell with Detail rules package was applied, adding facades with architectural
details to a 3D body (Schueren). The modelling result can be found in Figure 5.36.

o

Figure 5.36. 3D Model of the Buildings — LOD2 Representation

5.3.2. 3D Buildings Moddeling in CityEngine

CityEngine is a rule-based urban modelling software package (Kelly, 2021). The
programming language used in CityEngine is CGA — Computer-generated Architecture
and based on it, *.cga format files are created, that contain rules which are applied to
a 2D geometry to obtain the 3D model of the building ("CGA modelling overview—
ArcGIS CityEngine Resources | Documentation”).

The first step was the generation of streets, for which the axis was vectorized,
and then the CGA Complete_Streets_2022 rules were applied (Wasserman, 2023).
These include the rules in Figure 5.37, which divide the street into pavement and lanes,
and the rules in Figure 5.38, which give texture to streets. For each street, parameters
corresponding to the width of the road surface and sidewalks were chosen. Following
the generation of the streets, the lots resulted, to which textures were applied. The
results can be found in Figure 5.39.

Rightside-->
split(v,unitSpace,®){(_Transit_Lane_Wwidth_Switch(@,"sidewalk Side")):Transit_Lane_Reporting(a)
| _RightSplitSum:RightSplitSpace
| (_Transit_Lane_Width_Switch(®,"Right Most Lane")):Transit_Lane_Reporting(®)
|( _Distribute_Right_Lanes* _Actual_Lane_Width):Lanes(®, (case rightHandTraffic: Stop_End else: Stop_Begin))
| (_Transit_Lane_Width_Switch(®,"Left Most Lane")):Transit_Lane_Reporting(®)}

Leftside-->
split(v,unitSpace,@){({_Transit_Lane_Width_Switch(2,"Left Most Lane")): scalelV(®@,-1,-1) Transit_Lane_Reporting(2)
| (nLanesLeft* _Actual Lane_Width ): translatelV(8,8,-geometry.vMax) scalelV(®,-1,-1) |
Lanes(2, (case rightHandTraffic: Stop_Begin else: Stop_End) )
| (_Transit_Lane_Width_Switch(2,"Right Most Lane")):scaleUV(@,-1,-1) Transit_Lane_Reporting(2)
| _LeftsSplitSum:LeftSplitSpace
| (_Transit_Lane_Width_Switch(2,"Sidewalk Side")):scaleUV(@,-1,-1) Transit_Lane_Reporting(2)}

Figure 5.37. CGA Rule for Dividing Streets into Sidewalks and Lanes
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@startRule

Street --»
set(material.name, "Road_Bed")
Initial_Street_Settings

Initial Street_Settings--»
case Specularity==1 &% Transparency==0:
Short_Long_Street
else:
short_Long_Street_Altered

Short_Long_Street_Altered-->

case Transparency>® 8& Specularity==1:
set(material.opacity,l-Transparency)
short_Long_Street

else:
set(material.specular.g,Specularity)
set(material.specular.b,Specularity)
set(material.specular.r,Specularity)
shert_Long_Street

sShort_Long_Street-->
case _uScale==1:
Long_Street

else:
short_Street

Long_5treet--»
ReportMultimedalMetrics(reportingOn)
BridgeMain
split(u,uvspace,1){_crosswalkBeginWidth/1@: Asphalt("Auto”, "asphalt”)
| _crosswalkBeginWidth : Crosswalk( Crosswalk_Begin ,1)
| ~1 : StreetWithCrosswalkEnd }

Short_street--»
ReportMultimodalMetrics(reportingOn)
BridgeMain
set( Right_Bike_Box ,"false")
set( Left_Bike_Box ,"false")
set( Stop_Begin ,"none™)
set( Stop_End ,"none")
StreetWithEntries

Figure 5.38. Extract from the CGA Rule that Gives Texture to the Streets

Figure 5.39. Generated Lots with Applied Textures

In order to obtain the 3D models of the buildings, | imported into CityEngine the
shapefile with the buildings footprints generated with the trained DL model and
manually corrected, having their height determined from the LiDAR point cloud and
mentioned in the attribute table. The CGA rules in Figure 5.40 were applied for the
extrusion of the buildings footprints, generation of hip roofs, shaping of building
facades, differentiating the front facade, which also includes entrances, from side
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ones, division of buildings into ground floor and floors, generation of windows and
application of textures and colors. The final result can be found in Figure 5.41.

bttr Inaltimea_ = @

attr groundfloor_height =
attr floor height =
attr tile_width =
const window_color = "#alc2es”
const frame_color = "#c2c2c2”
const door_color = "#bababs"

PSR

@startRule
Lot -->

extrude(Inaltimea_)

Volume
Volume --> comp(f) { front : Frontfacade | side : Sidefacade | top : Top }
Frontfacade --»

split(y) { groundfloor_height : Groundfloor

| { ~floor_height : Floor}* }

Top -->

roofHip(3@, 1)

color("#9e3b2c™)

Sidefacade --»
split(y) { groundfloor_height : Floor
| { ~floor_height : Floor}* }

Floor --»
split(x) { B.4 : Solidwall
| { ~tile width : Tile }*
| @.4 : Solidwall }
Groundfloor --3»
split(x) { B.4 : Solidwall
| { ~tile width : Tile }*
|  ~tile width : EntranceTile
| @.4 : Solidwall }
Tile -->

split(x) { 1 : SclidwWall
| ~1 ¢ split{y) { 1.2 : Solidwall | ~1.3 : Window | @.5: SolidWall }
1 : Solidwall }
EntranceTile -->
split(x) { ~1 : SelidwWall
| 2.5 : split(y) { 3 : Door | ~2 : Solidwall }
| ~1 : Solidwall }
Solidwall -->»
s('1, 'l, -@.4)
primitiveCube()
color("#f7fada")

Window --»
t(e, @, -8.2)
split(y) { ®.1 : Frame
| ~1 : split(x) { ®.1 : Frame | { ~1 : Glass | 8.1 : Frame }* }
| .1 : Frame }
Glass --»
color(window _color)
set(material.specular.r, 8.5)
set(material.specular.g, 9.5)
set(material.specular.b, 1)
set(material.reflectivity, 1)
set(material.shininess, 18@)
set(material.opacity, @.5)

Frame --:
color(frame_color)

Door --»
t(e, @, -8.3)

split(y) { ~1 : split(x) { @.15 : Frame
|  ~1 : Panel
| @.85 : Frame
| ~1 : Panel
| .15 : Frame }

| .15 : Frame }
Panel -->
color(door_color)

Figure 5. 40. CGA Rules for Building Fagcades Modelling
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Figure 5.41. Building Modelling in CityEngine in LOD3 (LOD3.1, according to
classification by Biljecki et al. (2016))

The same rules, with variations in colours, were applied to the other buildings,
obtaining the result in Figures 5.42, 5.43 and 5.44.

. 5 S ‘ / -
! 3 g N £ Ry O
, @ ; 5
A -~ , / S

Figure 5.42. Area modelling in CityEngine with LOD detail evel 3 (LOD3.1,
According to the Classification Made by Biljecki et al. (2016)), Overview

Figure 5.43. 3D Model of the Area, Detail View
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7 m y
Figure 5.44. 3D Model of the Area, Detail View

5.3.3. Obtaining the 3D City Model Based on Open-Source Data

| used OpenStreetMap as an open-source data that can be imported into
CityEngine. The imported data consists of the road network, buildings footprints and
a satellite image. 3D models of the buildings were generated based on imported
footprints. To the obtained volumes a package of rules such as those described above
were applied, rules designed for buildings modelled based on data from
OpenStreetMap, and the 3D model of Baia Mare Municipality can be found in Figure
5.45.

Figure 5.45. 3D Model of Baia Mare Municipality (LOD2)
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5.3.4. Visualizing 3D City Models

In order to visualize the 3D model of Baia Mare, | published it as a hosted scene
layer (Figure 5.46).

Figure 5.46. 3D Model of Baia Mare in ArcGIS Online, with Setting the Time of
the Day

5.3.5. AR and VR Application for the Visualization of 3D City Models

In order to access the 3D model of the city in a VR and AR environment, | created
Bookmarks with points of interest, which | exported in a *.3vr format, compatible with
virtual reality visualization applications. The created AR environment can be viewed in
a browser (Figures 5.47 and 5.48) by rotating the image using the mouse, or on mobile
applications (Figures 5.49 and 5.50) by rotating the image by moving the phone. The
created VR environment can be accessed through a VR headset, with the user moving
around to rotate the image.

Figure 5.47. Visualization of the 3D Model of Baia Mare, Generated Based on
Open-source Data, in an AR Environment in a Browser
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...............

Figure 5.48. Visualization of the 3D AR Model of an Area in Baia Mare,
Generated Based on the LiDAR Point Cloud and Photogrammetric Images

1303 WE 4 - o 40%a 1302@E 4 - o= 40%8

(d @ dutcb.maps.arcgis.com + : > @ dutcb.maps.arcgiscom +

:EE Baia_Mare_3D_VR_2

" @) < Il @)

Figure 5.49. Visualization of the 3D model of Baia Mare, Generated Based on Open-
source Data, in a Mobile AR Environment
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Figure 5.50. Visualization of the 3D AR Model of an Area in Baia Mare,
Generated Based on the LiDAR Point Cloud and Photogrammetric Images

HTC Vive Cosmos (Figure 5.51) is a six-camera VR system with a pixel resolution
of 2880x1700 and can be connected to a computer to view various VR applications
("VRpro.ro: HTC Vive Cosmos"). This system was used to visualize the 3D model of
the city in a VR environment (Figure 5.52).

Figure 5.51. HTC Vive Cosmos VR System ("VRpro.ro: HTC Vive Cosmos")
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® VR View — O X

Figure 5.52. Viewing the 3D Model of Baia Mare, Generated Based on Open-
source Data, in a VR Environment, through the HTC Vive Cosmos VR System

5.4. Conclusions

In this chapter, two software products for point cloud classification and a Deep
Learning model trained on a dataset from the study area were tested. | found that for
the efficient training of such a model, it is necessary for the training dataset to include
a very large and diversified volume of data, and the performance of the hardware
system is a very important factor. The most effective solution in terms of results and
the least need for manual error correction was to use the automatic point cloud
classification tools implemented in ArcGIS Pro. This option was better for classifying
a larger volume of data such as that needed for a large urban area. Creating an
application in the Python programming language has increased the automatisation of
the entire process and has helped to reduce the time spent classifying the point cloud.

To extract buildings footprints | used ArcGIS Pro software through different
methods: using an existing DL model, using the point cloud, and training a DL model
for the specifics of the study area. Although all three methods require manual
interventions to correct image classification errors, by comparing it with the geometry
of a building from eTerra, the trained DL model provided the result that was closest to
reality.
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Regarding the generation of 3D buildings models, using an algorithm to generate
them based on the LiDAR point cloud did not provide the desired results, the surfaces
of the resulted models being irregular. Such a method involves major manual
interventions to rectify the resulting errors. Thus, | opted to use a function to extrude
the buildings footprints, at a height determined from the LiDAR point cloud that was
mentioned in their attribute table. | did the same in the CityEngine application, but in
this case the modelling was done thoroughly. In this regard, | proposed a set of rules
that were applied to the buildings footprints to obtain 3D models of them, including
details such as doors and windows at fagade level. Such modelling can be used to
manage emergency response, where fagade elements can be an important factor.

Open-source geospatial data has proven to be sufficient to obtain a 3D model of
the city, but its accuracy is low.

The presentation of 3D models of buildings and the possibility of distributing and
visualizing them is an important factor. If these models are meant to support society
by making resource management and emergency planning more efficient, they must
be accessible and understandable to the general public. The distribution of models in
a GIS Online environment or their visualization through a computer, a mobile or a VR
system in the VR application that was created, can support both citizens and
authorities, by reducing on-site trips in situations where this is necessary for the
analysis of different scenarios.
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6. General Conclusions, Original Contributions and Perspectives

6.1. General Conclusions

3D models of the cities are the basis of thorough analyses that support the
improvement of methods for solving the problems that today's society faces and the
accuracy with which they are achieved is an important factor in obtaining good
predictions in situations such as visibility analysis, energy demand estimation,
shadow estimation, energy potential estimation, or sound propagation. Their
standardization allows data exchange between different models, and CityGML
standards, with its five levels of detail, are widely used today. Depending on the field
of application of the 3D model, LODO, LOD1, or LOD2 can be chosen, for example for
visibility analyses, estimation of electricity demand, or energy potential, LOD3, which
also includes detailed elements of the walls, roofs and balconies, for shadow
estimation or sound propagation analyses, or LOD4, which also encompasses interior
building structures, for emergency response management.

The concept of "Smart City" refers to a 3D digital replica of a city, built both on the
basis of geospatial data and other dynamic data received in real time, related to the
population and how the resources are managed within an urban area.

The main objective of the doctoral thesis was to identify an optimal workflow for
generating, distributing and visualizing 3D models of cities, which can be further
implemented by authorities or other interested persons. In this regard, | analyzed the
main methods of acquiring geospatial data necessary for 3D modelling of the
buildings and the main techniques of 3D spatial modelling, the study area being in Baia
Mare city.

Depending on the chosen level of detail, the geospatial data acquisition technique
will be selected. For levels of detail LODO, LOD1 and LOD2 data acquisition via airborne
laser scanning may be sufficient. For the level of detail LOD3, the accuracy of the
generated 3D model depends on the density of the point cloud, and terrestrial laser
scanning that allows to obtain a point cloud with a higher density may be more
efficient. To generate a model with a level of detail LOD4, terrestrial or mobile laser
scanning inside the buildings is required. The acquisition of photogrammetric images
ensures the possibility to extract the buildings footprints with greater accuracy than
extracting them from the LiDAR point cloud.

For airborne laser scanning, scanners such as Leica CityMapper-2 or RIEGL VQ-
780ii-S can be used to obtain the point cloud for a larger area. To obtain a point cloud
with a higher density, terrestrial laser scanners such as Leica ScanStation P50 or
Trimble TX8 can be used. Mobile laser scanning can be performed through platforms
such as the Leica ProScan G-Series or the FGI ROAMER scanning system, developed
by the Geodetic Institute of Finland and used for road mapping.

Photogrammetric images can be aerial, taken from an UAV, terrestrial, taken with
a camera located on the ground, or satellite. Depending on the angle of retrieval, they
can be nadiral or inclined. Thus, for the acquisition of aerial photogrammetric images,
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nadiral photogrammetric cameras can be used, such as UltraCam Eagle Mark 3
(Vexcel) or Leica DMC Il (Leica), and oblique photogrammetric cameras can be used
to retrieve oblique photogrammetric images, such as UltraCam Osprey (Vexcel), Leica
RCD30 Oblique (Leica) or IGI Quattro DigiCAM Oblique (IGI).

The data for the case study of the doctoral thesis were acquired by airborne laser
scanning, with the RIEGL VQ-780ii-S laser scanner, in the case of LiDAR point clouds
and with the photogrammetric cameras Phase One P1-iXM-RS150F and P1-iXM-
RS100F in the case of photogrammetric images.

LiDAR point cloud classification and buildings footprint extraction are important
steps in generating the 3D models of the cities. Recent research in the field is based
mainly on machine learning classification with algorithms such as SVM, Adaboost,
Random Forest, Markov Random Field or Conditional Random Field (CRF).

The use of DL algorithms to perform these operations is the current standard in
the field, and in this regard, convolutional neural networks such as PointCNN, for
classifying the LiDAR point cloud and MaskRCNN, for extracting geometric elements
from photogrammetric images, stand out.

In the doctoral thesis, for the classification of the LiDAR point cloud, | used the
classification model defined by ASPRS, which also includes the classes Ground, Low
noise, Building, Low vegetation, Medium vegetation and High vegetation, on which the
comparative study within the paper was focused. Different software products may
provide different results because they are based on different classification methods,
and to that end, | performed point cloud classification with ArcGIS Pro and Bentley
Microstation Terrascan software products. Finally, | trained a DL model, based on the
convolutional neural network PointCNN, which proved to be effective for its intended
purpose. In case of a larger volume of data, which for technical reasons related to the
performance of the hardware components that are used, must be divided into several
files, it is necessary that the entire process of classifying the LiDAR point clouds to be
automated. Thus, | designed a workflow in the Python programming language, which
proved to be useful for managing data in a GIS environment.

For extracting the buildings footprints, | used both photogrammetric images and
the LiDAR point cloud as starting data. In addition, | used an existing image
classification model, taken from ArcGIS Online and also a trained DL model, the latter
providing the most realistic results. Through polyline compression algorithms, the
distortions of the obtained polygons can be corrected, in order to obtain shapes of the
buildings footprints as regular as possible.

Regarding the generation of 3D models of the buildings, performing this operation
exclusively based on the point cloud proved to be inefficient, due to irregularities in
the point cloud. An optimal solution proved to be the extrusion of the footprints
extracted from photogrammetric images, at a height determined from the LiDAR point
cloud. Thus, the initial hypothesis was confirmed, namely the need to acquire the two
types of geospatial data.

The programming language used in CityEngine — CGA — allows the application of
rules on 2D geometries to obtain 3D models of the buildings. The possibilities for
modelling are numerous, and in the case study | modelled the buildings with the levels
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of detail LOD1,LOD2 and LOD3. Thus, 3D models of the buildings have been generated
including fagade details, models that can be used to manage the response to
emergency situations, in which fagade elements such as doors and windows can be
an important factor.

Finally, how the modelling output is distributed and visualized is a very important
factor, as these models need to be accessible and understandable to the general
public. The development of Desktop or Mobile GIS applications was a solution to this
problem, and the visualization in a VR environment of the 3D model of the city brings
these applications to the current standards and offers the possibility of more efficient
management of time and resources by the authorities with responsibilities in the areas
where these models can be used.

In conclusion, for the spatial representation of buildings, | proposed the workflow
in figure 6.1.

LiDAR Point Photogrammetric
Cloud Images
Acquisition Acquisition
LiDAR Point Cloud Buildings Footprint Extraction
Classification using an Based on the Trained DL
Automated Python Model and the Automated
Workflow Python Workflow

Utilizing the CGA Rules to
Generate the 3D Models of
the Buildings and to Obtain

the 3D City Model

Distributing and Visualizing
the 3D City Model in the VR
Application

Figure 6.1. Proposed Workflow for Spatial Representation of Buildings
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6.2. Original Contributions

My personal contributions were the following:

>

Y V V

Detailed analysis of the main geospatial data acquisition
techniques necessary for 3D spatial modelling;

Analysis of the possibility of using open-source data in 3D city
modelling;

Analysis of current 3D spatial modelling techniques;

Point cloud classification with ArcGIS Pro software;

Point cloud classification with Bentley Microstation Terrascan
software;

Training a DL model for classifying the point cloud and
implementing it;

Making a proposal of a workflow for LiDAR point cloud
classification automation using the Python programming language;
Comparative study of point cloud classification methods;
Extracting buildings footprints in ArcGIS Pro software from
photogrammetric images;

Extracting buildings footprints in ArcGIS Pro software from the
LiDAR point cloud,;

Training a DL model for extracting buildings footprints and
implementing it;

Making a proposal of a workflow for extracting buildings footprints
automation using the Python programming language;
Comparative study of the methods used to extract buildings
footprints;

3D spatial modelling of an area in ArcGIS Pro software;

Proposing a set of rules in the CGA programming language for 3D
spatial modelling of an area;

3D spatial modelling of an area in the CityEngine software product;
Generating 3D models of the buildings in Baia Mare based on
available open-source data;

Creating an ArcGIS Online application to visualize the 3D model of
the city;

Creating a VR application to visualize the 3D model of the city;
Proposing a workflow for spatial representation of the buildings.
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6.3. Perspectives

In order to continue the study in the doctoral thesis, the following can be achieved:

» Improving the trained DL models by expanding the training data areas;

» Study on improving the methods for generating 3D models of buildings based
on LiDAR point clouds and identifying a method to smoothen the resulting
surfaces;

> Improving CGA modelling rules by creating different rules for different types of
buildings;

> 3D spatial modelling of the entire Baia Mare municipality based on data
acquired through the technologies presented in the doctoral thesis;

» Completing the 3D model of Baia Mare Municipality with data related to
population and resource management, to contribute to the achievement of a
Smart City.
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