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1. INTRODUCTION

For the biomechanical modeling of the human body, especially the osteo-articular
system, the laws and general principles of engineering are used. The model must be made so that
the behavior of the original system can be determined, within certain precision limits.

In order to study a mechanical system subject to the action of vibrations, it is necessary to
go through the following stages according to [1]: problem definition, physical modeling,
mathematical modeling, dynamic study of the mathematical model, verification of the
correctness of the model.

This research report presents biomechanical models of the human body and the hand-
forearm-arm system, models of the elbow and knee joints.

1.1. Field of study

The osteo-articular system can be considered a deformable spatial structure, with a
complex geometry , elastic properties and complicated loads.

An effective model can be created based on the known information about the
osteo-articular system and the action of vibrations on the human oranism. It must take into
account:

a) model geometry;
b) resting and loading it - in conditions close to reality;
c) the type of model — static, kinematic or dynamic.

Most bone elements have complicated geometric shapes. Their material is
inhomogeneous and anisotropic. Their structure is complex: on the outside a hard and compact
material, under which there is a spongy layer; the layers are arranged in such a way as to present
maximum resistance of commonly encountered requests. The dimensions, shape, mechanical
characteristics, elastic constants, physical constants of a bone differ greatly from one individual
to another, depending on a multitude of factors, the most important of which are: age, sex, waist,
profession, current physiological state, environmental conditions.

Dynamic modeling of the osteo-articular system is useful because :
the circumstances in which fractures occur of the bones are in the vast majority of dynamic
cases: fall, collapse , impact;
exercising normal physiological actions and movements is essentially dynamic: walking,
running, jumping ;
the aim is to improve the prostheses used in surgery of the osteo-articular system;
the effects of vibrations on the body are determined.

1.2.  Purpose and objective

This report presents some biomechanical models of elbow and knee joints. The objective
is to determine the pulsations and own frequencies using the Matlab program.



2. BIOMECHANIC MODELING OF THE HUMAN BODY AND A

ITS JOINTS

The human body is a complex structure that involves many non-linearities, therefore
creating a biomechanical model is difficult. Measuring movements and forces in the body is
difficult to perform, and active voluntary and involuntary muscle control influences the process.
The problems arise when obtaining the necessary empirical data and from the incomplete
understanding of the body's modes of movement. However, there are numerous attempts to
model a portion or the entire body.[9]

The laws of classical mechanics govern movement in the human body down to the
cellular level. If atoms or molecules are investigated, these laws are no longer valid.

Gowaerts believes that "biomechanics is the science that deals with the study of the
effects that mechanical forces have on the functional structure of man".

Due to the particular complexity of the human body, the biomechanical modeling of the
processes that take place inside it is a difficult task, and the principles and rules of mechanical
engineering can be successfully used. Thus, we can study equilibrium conditions under the
action of applied forces, abstracting from motion using a static model. If we follow only the
geometric aspect of the movement, without taking into account masses and forces, then the
model is kinematic (only the notions of space and time intervene). In a dynamic model all the
fundamental notions will come into play: space, time and mass. In any of these situations, the
laws of motion of the component elements can be written.

The geometry of the model, planar or spatial, on a real scale or on various other scales,
depending on the purpose pursued, has its importance. The nature of the material from which the
model is made, the connections (geometric restrictions) and the applied loads must correspond as
closely as possible to reality. [2]

In order to create an efficient biomechanical model, it is good not to neglect these
properties of the human body:

Inhomogeneity and anisotropy. Mechanical characteristics and elastic constants can vary in the
same organism.

Mobility. Tt introduces a large number of degrees of freedom. Large displacements of some
component parts add nonlinearities.

Complexity. The loads that act simultaneously on the body as a whole or on some of its parts
must be taken into account. The equations to be written are more complicated and require the use
of specialized calculation programs.

In the operation of developing effective biomechanical models, with the aim of studying
the dynamics of the human body subjected to the action of the vibrational field, the models must
be as close as possible to the biological reality and highlight the mechanical movement with all
its characteristics.[2]

The human body behaves like a deformable body, with particularly varied properties,
making it necessary to make some simplifications, which led to the appearance of various
models.

Real systems have been transformed into oscillating systems composed of masses that
accumulate kinetic energy, springs that contain potential energy, and dampers responsible for
energy dissipation.



The effects of vibrations on the human body turn out to be dynamic effects transmitted to
the whole body. The locomotor system facilitates the transmission of movement from the source
to the human body.[9]

The movement of a body represents its displacement action due to the interaction of all
the forces acting on it. In the case of the human body, one can consider either the movement of
the entire body, viewed as a unitary whole, or the differentiated movement of different segments
or sets of segments of the body.

In relation to a given direction, in space, there are two elementary movements:
translational movement and rotational movement. The movements of the human body are
combinations of the two elementary movements relative to the axes of the considered geometric
reference system.

Depending on the position of the chosen reference system, the movement can be
absolute, when the reference system is fixed, and relative, when the reference system is, in turn,
moving. Relative movement appears, for example, when considering the movement of one
segment of the body with respect to another, relativity being with respect to the reference
segment.

From a biomechanical point of view, material characteristics can be used to analyze a
bone or muscle structure: deformability materiality and its mechanical resistance .

The deformability of the material is quantified by the displacements produced in the
analyzed body. Deformations can be:

- elastic - when the deformations disappear with the cessation of the action of the forces that
produced them, the body returning to its original shape;

- plastic - when the deformations are residual after the cessation of the action of the forces;

- elasto - plastic — when the deformations disappear only partially after the cessation of the
action of the forces, and the displacements, which determine the size of a deformation, can be:

- linear (arrow) ;

- angular ( rotation) .

The mechanical resistance of the material (tension or unit effort), at a point of it, is
defined as the ratio between the value of the elemental force acting at that point and that of the
related elemental area.

The possible elementary movements of a body are: translational movement and rotational
movement. All other movements of the body, such as rototranslation, pivoting, plane-parallel
movements, etc., are obtained by combining the elementary ones, considered in the plane or in
space.

The movement of the body or kinematic segments is always related to a reference system.
By reference system is understood as a non-deformable benchmark against which the positions
of a material system are reported. Reference systems can be fixed or mobile, so that the
movement related to a reference system considered fixed is called absolute movement, and the
movement related to a mobile reference system is called relative movement.

In biomechanics, a mobile frame of reference usually originates at the body's center of
gravity, moving with the body's motion. Such a reference system is also called a relative
reference system . Figure 1 shows such a reference system.

The coordinates of a point related to this reference system are called relative. The origin
of an absolute reference system is an arbitrary point, in general, but with the property of being
fixed or considered fixed in space. The axes of this reference system are also fixed or considered
fixed.
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Figure 1

The separate representation of the reference planes is presented in figure 2. [5]

a. Plan Sagital b. Plan Frontal ¢. Plan Transversal

Figure 2

In biomechanics, the joints fulfill two well-defined main functions: they ensure the
transfer of movement from one segment to another of the body, realizing the movement of the



skeleton, and they ensure the transmission of mechanical loads between the segments of the
human body.

Articulation can be defined in several ways:

- from an anatomical point of view: "the assembly of soft elements that join two or more
neighboring bones", "the connecting organs between the bones" or "the totality of the elements -
represented by connective formations and muscles - by which the bones join each other";
according to this criterion, joints are considered including immobile ones, such as the joints of
the bones of the cranial box;

- from a mechanical point of view: "the direct and movable connection between two kinematic
elements, with the purpose of transmitting motion and force", "the system that restricts the
freedom of movement of a point or system of material bodies" or "the area or areas of contact
between two kinematic elements that determine the movement possibilities of the two elements";
- from a biomechanical point of view: "the connection or point of rotation between two or more
bones" or "the anatomical assembly that ensures the transmission of movement and the transfer
and dissipation of forces due to gravity or the muscular activity of the human body between two
or more bones".[5]

Depending on the nature of the binding formations between the bones, with the
appreciation of the shape of the bone ends, from a biomechanical point of view, the following
categories of joints are distinguished:

- fibrous joints or synarthrosis , in which the connection is made by fibrous connective tissue, the
bone ends having a complete congruence (joints by continuity), which practically leads to the
almost complete disappearance of any movement; examples: skull joints (sutures), alveolodental
joint;

- cartilaginous joints or amphiarthrosis , in which the connection between the bones is made by
hyaline cartilage or by fibrocartilage, which allows some relative movement between the bones;
examples: the bone pieces that make up the coxal bone, the joints between the vertebral bodies;

- synovial joints or diarthrosis , formed by joint surfaces, joint capsule and joint cavity, to which
can be added, depending on the functional characteristics of each joint: ligaments, menisci, fat
bodies, etc.; these joints ensure multiple and varied movements between the connecting bones;
according to the shape of the bone ends, the following diarthrosis are differentiated:

- planar joints (arthrodes), having mainly planar movements, where the articular surfaces
are flat or slightly curved; example: tarsal joint;

- spheroid joints (enarthrosis), where one bone head is spheroidal in shape, and the other,
conjugated surface, is convex in shape; examples: hip, shoulder joints, etc.;

- cylindroid joints (trochlear and trochoid), where the articular surfaces have conjugated
cylindroid shapes; examples: elbow joint (trochlear), superior radio-ulnar joint (trochoid), etc.;

- ellipsoid joints, where the articular surfaces have oval, ellipsoid shapes (condyles);
examples: knee joints, neck, hand, etc.;

- sellar joints (saddle-shaped), where the bone head has a concave shape in one direction
and convex in another direction; example: calcaneo-cuboid joint.[5]

The basic structural elements specific to a synovial joint are shown in figure 3. The
synovial articular cavity and the articular cartilages are what separate the articular bones, thus
reducing the friction of the articular surfaces and absorbing the shocks produced during body
movement. The joint capsule is the one that protects the joint by means of the fibrous connective
tissue from which it is formed. Due to the fact that the structure of this capsule is almost identical
to that of the ligaments, it is also called the ligament joint capsule. This capsule is lined on the



inside with a synovial membrane that has a series of important functions for joint movement.
Thus, the synovial membrane is the one that produces the synovial fluid, thus also feeding the
articular cartilage, it has the role of "cleaning" the joint through its macrophage function, it is a
plasma filter, being highly vascularized and it represents a proprioceptor element due to the
innervation which it contains. The joint capsule is not a continuous structure, forming synovial
bags that facilitate tendomuscular sliding during joint movements.
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Figure 3 [5]

These joints, found in biomechanics, can allow one, two or three relative movements
between the two bone bodies.[5]

The biomechanical functioning of a joint is influenced by two main characteristics:

- the anatomical shape of the articular surfaces, this being given by the type of movement
(rolling, sliding or combined);

- the thickness of the cartilage layer which, together with the material properties and the applied
load, determines the mechanical tension in the bone.[5]

The mathematical modeling of the joint investigates its working mode, the way the
interaction of the elements affects its kinematics, the resistance to overload, breakage, fatigue
and vibrations.

The human joint can be defined as a compression between two rigid bodies. Thus, the
human skeleton can be represented as an articulated figure comprising several links that interact
through the joints.

Of particular interest is the joint's ability to interactively change the orientation and
position of the axis or center of rotation.[3]

Bone is considered a viscoelastic material because, with increasing stress, its strength and
modulus of elasticity increase up to a certain limit. The physical model of such a material is
represented in figure 4. They were denoted by k — the coefficient of elasticity, and by ¢ — the
damping coefficient, measured in [Ns/m].

The movement of the body is carried out under the action of the following internal forces:
nervous impulse, muscle contraction and osteo-articular levers.

a) Nerve impulse - it is transmitted along the path of a reflex arc (receptors, afferent path, nerve
center, efferent path and motor plate) to the muscle cell. The mechanisms underlying the
movements are neuromuscular in nature.



b) Muscle contraction - a response reaction to stimulation by the nerve impulse. Muscle
contraction is a manifestation related to the change in muscle elasticity. It manifests either as a
strengthening of the muscle, or as a change in its strength and shape.
¢) Osteo-articular levers . Nerve impulses produce muscle contractions, which in turn cause the
displacement of bone segments at the level of muscle insertions, thus transforming chemical
energy into mechanical energy. The bone segments on which the muscles act act like levers in
physics. A rigid bar that can rotate about a fulcrum is considered a lever. The bones of the body
have the axis of rotation in the joints, the active force is given by the muscles, and the resistance
force is given by the weight of the body or its segments. The levers have the role of transmitting
the movement, from the muscles and tendons to the resistive load, increasing its efficiency.

There are three types of levers, depending on the placement of the two forces (active and
resistance) in relation to the support point:
Levers of the first degree - the levers at which the fulcrum is located between the two moments
of force application and of resistance, both directed in the same direction. Examples: at the level
of the joint between the skull and the vertebral column (atlanto-occipital), at the level of the
coxo-femoral joint (in a sitting position). In the human body, all first degree levers have unequal
arms, therefore the forces that balance them are also unequal. They are balance levers.
Second degree levers - levers that have the point of support at one end, force at the other end,
and resistance in between. In the human body, this kind of levers is disputed, most authors admit
that there is only one example, at the talocrural joint, in the position - standing on the tips. These
are levers of force.
Grade 11l levers - levers that have the point of support at one end of the lever, resistance at the
other end, and force between these. In the body humanly, this kind of leverage is very
widespread. They act with loss of force and gain of displacement. Example: the elbow joint,
where the support point is in the joint, the resistance at the other end (given by the weight of the
forearm and hand), and the force is between them (given by the flexor muscles of the forearm on
the arm).
These are gear levers.[6]

The external forces involved in making the movement are:
a) the force of gravitational attraction represents the affirmation of a universally valid law in
nature. According to the law of universal attraction, the earth attracts bodies and at the same time
is attracted by them. To overcome this force, a large amount of energy is required. The force of
attraction of the earth acts on every molecule of the body. The sum of the attractive forces
exerted on all the molecules of a body makes up the total gravitational attractive force acting on
that body. It can be considered that a single force acts on a body, applied at a single point, called
the center of gravity.
b) body weight always acts vertically, from top to bottom on the center of gravity of the body or
segment. The value of this force is related to volume, length, density the moving segment or the
number of segments engaged in movement. Practically, the value of this force is related to the
mass of the moving segment.
c) atmospheric pressure it presses on the body with a variable intensity depending on the speed
of travel. The action of the atmospheric pressure on the body is compensated by the internal
pressure of the large cavities with values identical to those of the atmospheric pressure.
d) the resistance of the environment is manifested when the human body is in motion performing
various activities in the open air or in water. It depends on the size of the frontal surface that the
body opposes to the environment.

10



e) inertia it is the force that maintains the body's state of rest or movement.
f) frictional force it is proportional to the weight of the body sliding on a support surface and to
the coefficient of friction.

Internal and external forces work together and influence each other. The entire human
activity takes place with the help of these forces, in which the decisive role is played by the
muscular contraction directed by the cerebral cortex.[6]

In order to be able to model the human body, which behaves like a deformable body,
simplified biomechanical models are needed. Real systems thus became oscillating systems
made up of springs (accumulate potential energy), shock absorbers (dissipate energy) and masses
with the role of storing kinetic energy.

Among the models created over time for modeling the human body are:

Saint Venant's solid is a body in which deformations occur after stresses reach a certain
threshold. The model is also called the plastic-rigid body (figure 5).
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_L. oc=E-¢+n-¢

Figure 5 Figure 6

The model in which the tension is directly proportional to the deformation and the
deformation speed is called the Kelvin-Voigt body (figure 6).

Connecting a spring in series with a damper results in a model that behaves differently in
relation to the speed of application of the load. This model is known as Maxwell's body (figure7).
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Figure 7
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3. BIOMECHANICAL MODELS OF THE HAND — FOREARM - ARM SYSTEM

AND OF THE HUMAN ELBOW JOINT

3.1. Biomechanical models of the hand-forearm-arm system

The first biomechanical model of the hand-forearm-arm system was made by Dieckmann
in 1957. The purpose of the model was to determine the impedance and the frequency response
function in the vertical direction. Attempts to develop biomechanical models, by combining
simple models, existed both before and after this year. Figure 8 shows two models made by
Kuhn (figure 8a) in 1953 and Dieckmann (figure 8b) in 1958.

Figure 8

In 1984, Professor Magheti created a biodynamic model of this system, which highlights
the dependence of the frequency response on the operator's working position. The model studies
the complex movement of the hand-arm system (rotation, plane-parallel), not only translational
movements (figure 9).

Figure 9

antebrat
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Walter Murel together with a group of collaborators makes the assumption that the bones
of which the upper limb is composed can be modeled in the form of rigid cylinders, and the
biomechanical model appears in 1996 (figure 10).
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Figure 10 [2]

Alexandra Picu, in her doctoral thesis, analyzes the dynamic behavior of the hand-arm
system under the action of vibrations, on a model with three degrees of freedom, assimilated to a
end (figure 11).[2]

triple pendulum, whose masses move in a vertical plane, with restrictions kinematics at the free

i

»
»

Figure 11



In figure 11, M, .M, ,M , represents the total resultant moments, and u(z) has the form:

u(t)=u, -sinwt. Using Lagrange's equations of the Il-a type and making successive

substitutions, a system of three equations is obtained that can be written in matrix form as
follows:

[7]: [costad)]- 161+ [C]- ||+ [K]-[6] = [S]- & - [sin((6D)] - [/]- [sin(ta6D)] - |67 |+ [Ex]- i,

in which,

[ J ] is the inertia matrix of the system;

[ K] is the stiffness matrix of the system;

[ C]1is the matrix of viscous dissipation coefficients;

[ S] is the influence matrix;

[ Ex ] is the excitation vector.

Due to the complexity and non-linearities, the solution of this system was achieved by
numerical methods.

A group of researchers from the University of Guelph in Canada, consisting of Hussein
Abdullah, Cole Tarry, Rahul Datta, Gauri Mittal and Mohamed Abderrahim, published, in 2007,
an article presenting a dynamic biomechanical model used in the evaluation and monitoring of
upper limb therapy. The shoulder joint is represented with three degrees of freedom, and the
elbow joint with two degrees of freedom (figure 12).
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Figure 12

A model with three degrees of freedom of the human finger was made and presented as
part of his doctoral thesis by Mr. Radu Panaitescu-Liess, member of the Department of
Mechanical Technology at UTCB. The bones of the finger, called phalanges, are short, three
each for each finger except the thumb which has two. The first phalanx - phalanx proximalis -
articulates with the metacarpal bone. The second phalanx — the medial phalanx — is attached by
means of the interphalangeal joints. Finally, the third phalanx - phalanx distalis - is attached at
one end to the interphalangeal joint, the other end being free and sharp (figure 13).[2]
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The movement can be studied in the yOz plane (vertical plane), the three phalanges being
assimilated with three bars of mass m; and lengths /;, connected by cylindrical joints in which act
springs with elastic constants &, and shock absorbers with damping coefficients ¢,; (figure 14).
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Panaitescu-Liess presented a model with 8 degrees of freedom of the hand-forearm-arm
system and calculated, with the help of the Matlab program, its own pulsations and frequencies
(figure 15). System dampings have been neglected.
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Figure 15

To determine the pulsations and natural frequencies, the experimental data for masses
and stiffnesses from [21] were used (tables 1 and 2).

Table 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M [kg] 0.014 | 0.023 | 0.008 | 0.012 | 0.026 | 0.01 0.015 | 0.029 | 0.007 | 0.01 | 0.023 0.006 0.007 | 0.016 | 0.213

k[kN/m] | 11.59 | 5,527 | 10.89 | 9,713 | 5,431 | 10.94 | 9,661 | 5,169 | 9,146 | 8.19 | 4,804 | 2,994 7,761 4,675 | 15.43

Table 2

15 16 17
M [ke] 0.213 | 0.016 | 0.213
K [kN/m] 15.43 | 4,675 | 15.43

The inertia [M] and stiffness [K] matrices are of the form:

Mgy O 0 0 0 0 0 0
0 Mg 0 0] 0 0 0 0
0 0 mg O 0 0 0 0
M= © O O Mm 0 0 o u]
o 0 0 0 My, O 0 0
0 0 0 0 0 Mg 0 |
o 0 0 0 0 o my, O
Lo o o 0 0 0 0 my,
[k, 0 0 0 0 ek, 0 0
0 ks 0 0 0 —ki2 0 0
0 0 kes 0 0 ~Kl2 0 0
0 0 0 Koy, 0 —kgy, 12 0 0
[Kl=] o 0 0 0 ks ik, B 0 0
; kis +4-kp, +
Dy, k) —KgFZ ~Bl? B l? SR e, R 5.5 kis 0
0 0 0 0 0 —ki S T
L0 0 0 0 0 0 T e
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where:
My, = My + ey
Migy = Mg + 1M, + Mg
Mes — M, + Mo+ My,
Mogq = Mg T My + My
Mypqq = Myp T Mg+ My
Kis =k + ks,
hge = kg + ky + kg
Koo =k, + ko + kg
Kotn = Ko+ Ryg+ Kqy
Kipta = Kyp + Kyg + Kgg

inertia [M] and stiffness [K] matrices as input data and the string the program results in:

>> % pulsations and own frequencies biomechanical hand-forearm-arm model, 8 degrees of
freedom

>> %input data

>> %mass, [kg]

>>
m1=0.014;m2=0.023;m3=0.008;m4=0.012;m5=0.026;m6=0.010;m7=0.015;m8=0.029;m9=0.00
7:m10=0.010;m11=0.023;m12=0.006; m13=0.007;m14=0.016;m15=0.213;m16=1.0;m17=1.58;
>> %mass definition

>>ml2=ml+m2;

>>m35=m3+m4+mS5;

>>m68=m6+m7+mS§;

>>m911=m9+m10+ml1

>>ml214=m12+m13+m1l4

>> Ystiffness, [N/m]

>> C=10"3;

>>
k1=11.59*C;k2=5.527*C;k3=10.89*C;k4=9.713*C;k5=5.431*C;k6=10.94*C;k7=9.661*C;k8=5
.169*C;
k9=9.146*C;k10=8.187*C;k11=4.804*C;k12=2.994*C;k13=7.761*C;k14=4.675*C;k15=15.43*
C;k16=16.33*C;k17=41.22*C;

>> % definition of stiffness

>>k12=k1+k2;

>> k35=k3+k4+k5;

>> k68=k6+k7+k8;

>>k911=k9+k10+k11;

>>k1214=k12+k13+k14;
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>> %inertia matrix
>>M=[ml20000000;
O0m35000000;
00m680000O0;
000m9110000;
0000ml1214000;
00000ml1500;
000000ml60;
0000000ml17]

M:

0.03700000000
00.0460000000
000.054000000
0000.04000000
00000.0600000
000000.213000
0000001.00000
0000000 1.5800

>> Y% stiffness matrix

>>K=[k120000-2*k12 0 0;

0k35000-k35/200;

00k6800-k68/200;

000k9110-k911/20 0;

0000Kk1214 -k1214/2 0 0;

-2*k12 -k35/2 -k68/2 -k911/2 -k1214/2 k15+4*k12+0.25*(k35+k68+k911+k1214) -k15 0;
00000-kl15kl15+k16 -kl16;

000000-k16 kl6+k17]

K=
1.0e+005 *

0.17120000-0.3423 00

00.2603000-0.130200

000.257700-0.1288 0 0

0000.22140-0.110700

00000.2955-0.1478 0 0

-0.3423 -0.1302 -0.1288 -0.1107 -0.1478 1.0977 -0.1543 0
00000-0.15430.3176 -0.1633

000000-0.1633 0.5755
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>> 9% dynamic matrix calculation D
>> E=inv(M)

E:

27.02700000000
021.7391000000
0018518500000
00025.00000000
000016.6667000
000004.694800
000000 1.00000
00000000.6329

>> D=E*k
D =
1.0e+005 *

4.62620000-9.252400

05.6596000-2.8298 00

004.772200-2.3861 00

0005.53430-2.7671 00

00004.9255-2.462800

-1.6072 -0.6111 -0.6049 -0.5196 -0.6937 5.1536 -0.7244 0
00000-0.1543 0.3176 -0.1633

000000-0.1034 0.3642

>> %determination of eigenpulsations - the problem of vectors and eigenvalues
>>[Q,V]=eig(D);

>> p=sort(sqrt(eig(D))); Y%oown pulsations
>>pl=p(1);

>>p2=p(2);

>>p3=p(3);

>> p4=p(4);

>>p5=p(5);

>> p6=p(6);

>>p7=p(7);

>> p8=p(8);

>> %determination of own frequencies
>> f1=p1/(2*pi);
>> £2=p2/(2*pi);
>>13=p3/(2*pi);
>> f4=p4/(2*pi);
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>> £5=p5/(2*pi);

>> f6=p6/(2*pi);

>> {7=p7/(2*pi);

>> f8=p8/(2*pi);

>> disp(['p1=', num2str(pl),'[rad/s]'])
p1=83.7516[rad/s]

>> disp(['p2=', num2str(p2),'[rad/s]'])
p2=190.6532[rad/s]

>> disp(['p3=', num2str(p3),'[rad/s]'])
p3=245.556([rad/s]

>> disp(['p4=', num2str(p4),'[rad/s]'])
p4=689.7625[rad/s]

>> disp(['p5=', num2str(p5),'[rad/s]'])
p5=699.8519[rad/s]

>> disp(['p6=", num2str(p6),'[rad/s]'])
p6=737.6675[rad/s]

>> disp(['p7=', num2str(p7),'[rad/s]'])
p7=749.1967[rad/s]

>> disp(['p8=', num2str(p8),'[rad/s]'])
p8=980.1244[rad/s]

>> disp(‘'own frequencies:")

natural frequencies:

>> disp(['f1=', num2str(f1),'[Hz]'])
f1=13.3295[Hz]

>> disp(['f2=", num2str(f2),'[Hz]'])
2=30.3434[Hz]

>> disp(['f3=", num2str(f3),'[Hz]'])
£3=39.0814[Hz]

>> disp(['f4=", num2str(f4),'[Hz]'])
f4=109.7791[Hz]

>> disp(['f5=", num2str(f5),'[Hz]'])
£5=111.3849[Hz]

>> disp(['f6=", num2str(f6),'[Hz]'])
f6=117.4034[Hz]

>> disp(['f7=", num2str(f7),'[Hz]'])
£7=119.2384[Hz]

>> disp(['f8=", num2str(f8),'[Hz]'])
f8=155.9916[Hz]

3.2. The elbow joint
The pivoting joint of the elbow joins the humerus bone of the arm with the radius and

ulna bones of the forearm. The relationship between the radius and the ulna allows rotary
movements of the elbow, the radius bone rotating around the ulna, thus turning the hands.[10]
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This joint has only one degree of freedom. It allows the execution of flexion and
extension movements of the forearm on the arm. Active flexion and extension have a normal
average amplitude of 150°, of which 90° is extension and 60° flexion.

The articular surfaces are:

— the lower extremity of the humerus (trochlea, humeral condyle and epicondyle);

— the upper extremity of the ulna has a semilunar hollow (great sigmoid cavity), the coronoid
apophysis, in the anterior part of the sigmoid cavity and the tuberosity (olecranon), in the
posterior part of the sigmoid cavity. At the external edge of this cavity there is another semilunar
cavity (small sigmoid cavity) which takes part in the composition of the upper radio-ulnar joint.

— the upper extremity of the radius has a cavity that adapts to the humeral condyle.

Articular surfaces they are covered by hyaline cartilage. The humeral trochlea comes in
relation to the ulnar notch, and the humeral condyle to the fossa of the radial head.

The means of union are the articular capsule, which connects the humerus with the ulna
(ulna) and the radius. The articular capsule is lax and reinforced laterally by four stronger
ligaments arranged anteriorly, posterior, external side and internal side.

The synovial membrane is like a thin sheet that covers the joint capsule from the inside.

The muscles involved in elbow movements are flexors and extensors. The flexor muscles
are: biceps brachii ( the most important action is that of supination and, on a secondary level,
flexor of the forearm on the arm); the anterior brachialis is located under the biceps; epicondyle
muscles (four in number: brachio-radial, the first external brachialis, the second brachialis, the
extensor supinator). The extensor muscles are: triceps brachii (a voluminous muscle); anconeus
(a short, triangular muscle, located on the back of the elbow).[6]

Figure 15 [10]

Biomechanics of the elbow joint

The elbow joint is a pivot joint and allows only the execution of flexion and extension
movements. The flexion movement is the approach of the forearm to the arm. It has a normal
active amplitude of nearly 150°. In the final phase of the movement, the hand is not oriented
towards the shoulder but towards the chest, because the axis of the forearm does not overlap the
axis of the arm, but is directed towards it inside. The explanation lies in the upward and inward
oblique orientation of the groove of the humeral trochlea.
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The flexor muscles are: the anterior brachialis, the biceps brachii and the epicondyle
muscles.

The extension movement is the movement of removing the forearm from the arm. The
amplitude is 90°. The extension movement is limited by the tip of the olecranon and by the
anterior ligament of the elbow which is put under tension.

The extensor muscles are: triceps brachii and anconeus (accessory).

By contracting these muscles, the forearm acts as a lever, in which the fulcrum is in the
elbow joint.[6]
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Figure 16 [10]

3.3. Biomechanical models of the elbow joint

A model with two degrees of freedom of the elbow joint, similar to a double pendulum,
whose masses evolve in a single vertical plane, with kinematic restrictions imposed on the free
end of the second element, is presented in figure 17.

The following assumptions were made for this biomechanical model:
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- in the joint acts a resistant moment of elastic and viscous type, both having the linear
characteristic in a first approximation;

- the connection between the elements of the model is made by means of cylindrical joints;

- the movement is studied in the vertical plane;

- dry friction forces in the joint were not taken into account.

7
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h/

<v

a1

L:

mg [

zV
Figure 17

In the shoulder joint C the total resultant moment is:
R E D
Mco=Mco+Mcy
where:
ME, - the resultant elastic moment; M 5 - the resulting dissipative moment.
The elbow joint C; has the total resultant moment:

R 1/ E D
Moy =Mey +Mey

with: M 51 - the resulting elastic moment; M CDI - the resulting dissipative moment.
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The system of differential equations of motion according to the model is found with the
help of Lagrange's equations of the second kind:

i(@EJ_ OE _oV oD
dr\0q; ) 0q; 0Oq; 0q;
where E is the total kinetic energy of the system, J the potential energy, D the dissipation, and g ;
are the generalized coordinates that define the movement of the considered system.
The generalized coordinates are the angles in the two joints (&, and 6,), between the

longitudinal axis of the element and the vertical axis Oz .

The kinetic energy is given by the expression:

E =%(J1 -6?12)+%(J2 -(922)+%m2vA2

where J; are the moments of inertia of each element i evaluated with respect to the articulation

point ( J;) and with respect to its own center of gravity ( J>); m2is the mass of the forearm; v42 is
the velocity of the center of gravity of the forearm.

To evaluate the speed v 4, , the coordinates of the center of gravity were determined 4, :
z 49 =Ly cos O, +a, cos b,
{yAz =L, sin6, +a, sinb,
Coordinates of point C 2, in which the kinematic restrictions are applied, are:
Zey =Zepo tUcosa
{ycz =Ycoo tusina
and
Zcoo =Ly cosO) + Ly cos 0,
{yczo =L, sin6 + L, sinb,
are the initial coordinates of point C;and:
u= u(t) =u sin wt
In the relations above we have the following quantities:
0; - the initial values of the two angular coordinates;
L; - the lengths of the two component elements of the model;
u(t) - the kinematic excitation function of the model,;

o - the angular velocity of the external kinematic disturbance;
uq - the amplitude of the external disturbing movement.

Taking into account the expression (4.3), the linear velocity of the mass can be
determined m, :

yAZ = L1(91 CcOoS 91 + (120.2 COS 92
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To determine the pulsations and natural frequencies for the system with three degrees of
freedom hand-forearm-arm , the model of the researchers Suggs and Mishoe (1974) represented
in the figure above is used, not taking into account depreciations and using the data from table 1

for calculations.

ml=m17=1.58 kg

m2=m16=1 kg
m3=ml+m2+....+m15=0.419kg
k1=k17=41,22.10 3 N/m
k2=k16=16,33.10 3 N/m
k3=k1+k2+.....+k15=121.918.10 3~N/m

1,58 D
M=r s ] [ 0 ]kg
Mg o 0,419

Ky + k —k, 0 5755 —18,33
K= [ —k,  k, ¥ 1.;:3 —kal = [—16,33 138,248
0 —k. %a 0 —121,91%

>> %data entry
>>ml=1.58; % kg
>>m2=1; % kg
>>m3=0.419; % kg
>>k1=41.22*10"3; %N/m
>>k2=16.33*10"3; %N/m
>>k3=121.918*10"3; %N/m
>> %inertia matrix
>>M=[ml 0 0;

0m2 0;

0 0 m3]

M=

1.580000

0 1.0000 0

000.4190

>> % the stiffness matrix
>> K=[k1+k2 -k2 0;

-k2 k2+k3 -k3;

0 -k3 k3]

K =

1.0e+005 *
0.5755-0.1633 0
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-0.1633 1.3825 -1.2192
0-1.21921.2192

>> 9% dynamic matrix calculation D
>> E=inv(M)

E =

0.632900

0 1.0000 0

00 2.3866

>> D=E*K
D =
1.0e+005 *

0.3642 -0.1034 0
-0.1633 1.3825 -1.2192
0-2.9097 2.9097

>> %determination of eigenpulsations as a problem of vectors and eigenvalues
>>[Q,V]-eig(D);

>> p=sort(sqrt(eig(D))); %oown pulsations
>>pl=p(l);

>>p2=p(2);

>>p3=p(3);

>> %own frequencies

>> fl=p1/(2*pi);

>> 2=p2/(2*pi);

>> £3=p3/(2*p1);

>> %display the results

>> disp('Display results')

Display results

>> disp('Own pulses are:")

The own pulsations are:

>> disp(['p1=', num2str(pl), '[rad/s]'])
p1=85.787[rad/s]

>> disp(['p2=', num2str(p2), '[rad/s]'])
p2=200.7436[rad/s]

>> disp(['p3=', num2str(p3), '[rad/s]'])
p3=646.5202[rad/s]

>> disp('Eigenfrequencies are:')

The natural frequencies are:

>> disp(['f1=', num2str(f1), '[Hz]'])
f1=13.6534[Hz]

>> disp(['f2=', num2str(f2), '[Hz]'])
2=31.9493[Hz]

>> disp(['f3=', num2str(f3), '[Hz]'])
3=102.8969[Hz]
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4. BIOMECHANICAL MODELS OF THE HUMAN ORGANISM

In the following, I will present some models of the human body found in the materials
studied for the paper.

In 1977 the researchers Patil, Palanichamy and Ghista made a nonlinear model with
seven degrees of freedom (figure 18), complementing the model of Muksian and Nash of 1974
for a human body in the sitting position .

Ce,7
cap Ke,7
———
Cs6 | Ca6
trunchi Ks.6 - Ka6
5 (N
spate
C34
torace Ksa
diafragma
abdomen
z
pelviana }Lcl K sezut
regiune Zjn !
Figure 18 [ 2 ] Figure 19 2]

Professor Magheti presents a model of the human body in a vertical position, in the form
of concentrated masses (figure 19).

The International Organization for Standardization published in 1987 the standard ISO
7962:1987 (revised by ISO 5982:2001). It also contained a model with four degrees of freedom
of the human body (figure 20) used to determine the transmissibility of head vibrations, in the
vertical direction, for the range 0.5 — 31.5 Hz. The standard is limited to sitting and standing
positions, and the model does not take into account the non-linearities of the human body.[2]

Also, the model parameters are defined in this standard, with the following values:

27



kg] [N/m]
m; | mz2| ms3 my ki k> ks k4
824 | 8.05|44.85|13.86(22-10% [20.13:10%|88.56-10° 36,47 10 3

[N/m] [ N*s/m]
k, k; k, 1 c2 |c3 |cq
36107 65-10° [5234:10% 169.3-103 | 748.1 578 12964 | 901.8

*

gat-cap

torace

mana-picioare

Figure 20

A biomechanical model of the human body under the influence of vibrations, in sitting
and standing positions, was created by Cherian in 1990 (figure 21).

Goel and his collaborators presented in 2001 a seven-degree-of-freedom model of a
human subject standing on a rigid support (figure 22). The masses were arranged by respecting
the anatomical elements, and the values of the damping constants, stiffness coefficients and
masses are [2]:

m, =6kg, m, =7kg, my, =27174kg,

m, =32,697kg, m; = 6,529 kg,

mg=6kg, m, =7kg

k, =k, =310n/a

ky=k, =k, =k; =k, =k; =1500n/a

¢, =cs =3970N. -s/m

c,=C,=C, =C5 =C; =cg =100000 N. -s/m

The masses of the hands are considered to be included in the mass my.
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For the model in figure 18, the own frequencies and pulsations will be determined with
the help of the Matlab program. The experimental data from the table will be used.

Table 3
1 2 3 4 5 56 6 7
M [kg] 27.23 5,921 ]0.455 | 1,362 | 32,762 | - 6,820 | 5,450
k [kKN/m] | 25500 | 877 |[877 |877 |877 52600 | 52600 | 52600
My O o 0 0 o 0]
o m, 0 0 0 0 0
0 0 my 0O O 0O O
M=10 0 0 My ] 0 8]
o 0 © 0 mg 0 0
o 0 © 0 0O my O
lo 0 0 o o o0 )
[k, +k, +k, -k, 0 0 0 ~k, 0 ]
~k, k,+k, -k, 0 0 0 0
0 ~ky,  ky+k, -k, 0 0 0
[K]= 0 0 ~k, Kk, +k, ks 0 0
0 0 0 —ky kg +k, = 2 0
~k, 0 0 0 k, ko+k,+k, -k,
I 0 0 0 0 0 =3 & |

% biomechanical model of the human body with 7 degrees of freedom - pulsations and own
frequencies

>> %data entry

>> %mass, [kg]
>>m1=27.23;m2=5.921;m3=0.455;m4=1.3362;m5=32.762;m6=6.820;m7=5.450;

>> Y%stiffness, [N/m]
>>k1=25500;k2=877:;k3=877,k4=877;k5=877:k56=52600;k6=52600;k7=52600;

>> %inertia matrix
>>M=ml100000O0;
0m200000;
00m30000;
000m4000;
0000m500;
00000m60;
000000m7]
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M:

272300000000
05.921000000
000.45500000
0001.3362000
000032762000
000006.82000
0000005.4500

>> %stiffness matrix

>> K=[k1+k2+k6 -k2 0 0 0 -k6 0;
-k2 k2+k3 -k30000;

0 -k3 k3+k4 -k4 00 0;

0 0 -k4 k4+k5 -k5 0 0;

00 0 -k5 k5+k6 -ké6 0;

-k6 0 0 0 -k56 k56+k6+k7 -k7;
00000 -k7k7]

K:

78977 -877 000 -52600 0
-8771754-8770000
0-8771754-877000
00-8771754-87700

000-877 53477 -52600 0

-52600 0 0 0 -52600 157800 -52600
00000-52600 52600

>> % dynamic matrix calculation D

>> E=inv(M);

>> D=E*K;

>> %determination of eigenpulsations as a problem of vectors and eigenvalues
>>[Q,V]=eig(D);

>> p=sort(sqrt(eig(D))); %oown pulsations
>> %determination of own pulsations
>>pl=p(l);

>>p2=p(2);

>>p3=p(3);

>> p4=p(4);

>>p5=p(5);

>>p6=p(6);

>>p7=p(7);

>> %determination of own frequencies
>> f1=p1/(2*pi);

>> £2=p2/(2*pi);
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>> 3=p3/(2*pi);

>> fA=p4/(2*pi);

>> 5=p5/(2*pi);

>> f6=p6/(2*pi);

>> {7=p7/(2*pi);

>> disp('Results:")

Results:

>> disp(‘own pulses:')

own pulsations:

>> disp(['p1=', num2str(p1l),'[rad/s]'])
p1=12.6954[rad/s]

>> disp(['p2=', num2str(p2),'[rad/s]'])
p2=17.2202[rad/s]

>> disp(['p3=', num2str(p3),'[rad/s]'])
p3=30.7225[rad/s]

>> disp(['p4=', num2str(p4),'[rad/s]'])
p4=48.6351[rad/s]

>> disp(['p5=', num2str(p5),'[rad/s]'])
p5=65.9049[rad/s]

>> disp(['p6=", num2str(p6),'[rad/s]'])
p6=80.4402[rad/s]

>> disp(['p7=', num2str(p7),'[rad/s]'])
p7=167.9425[rad/s]

>> disp(‘own frequencies:")

natural frequencies:

>> disp(['f1=", num2str(f1),'[Hz]'])
£1=2.0205[Hz]

>> disp(['f2=', num2str(f2),'[Hz]'])
2=2.7407[Hz]

>> disp(['f3=', num2str(f3),'[Hz]'])
£3=4.8896[Hz]

>> disp(['f4=', num2str(f4),'[Hz]'])
t4=7.7405[Hz]

>> disp(['f5=", num2str(f5),'[Hz]'])
£5=10.4891[Hz]

>> disp(['f6=", num2str(f6),'[Hz]'])
f6=12.8025[Hz]

>> disp(['f7=', num2str(f7),'[Hz]'])
£7=26.7289[Hz]
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5. BIOMECHANICAL MODELS OF THE HUMAN KNEE JOINT
5.1. The knee

The knee is one of the most complex joints in the body. It connects the thigh and calf.

The knee skeleton consists of the lower extremity of the femur (thigh bone), the upper
extremities of the two bones of the calf: the tibia and the fibula, and the region's own bone, the
patella (figure 18).
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Figure 18 [10]

This joint, like the elbow, belongs to the category of pivoting joints (which accepts
movement in one plane, example: bending/straightening the knee) (figure 19). It does, however,
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allow some forward and backward gliding movements and a reduced level of rotational
movements. The knee is a joint capable of lifting weights.

f
LAY
S

Figure 19 [10]

The three bones that meet at the knee and the joint cavity between them are united by the
capsule of the knee joint. This capsule has a membrane on the edge and is filled with synovial
fluid that lubricates the surfaces of the joint. The base of the femur and the head of the tibia have
a cartilaginous layer that supports the slow movement of the knee. The patella is located in the
tendon of the quadriceps muscle and has an approximately triangular shape. The anterior face is
convex and comes into contact with the fascia of the knee and with the integuments. The back
face is concave. On its base and edges, the quadriceps tendon is inserted, and at the top, the
patellar tendon.[10],[6]
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Since the bones of the knee joint cannot hold themselves in position, a network of strong
ligaments and muscles is necessary to provide strength and stability. The patella is held in
position by strong ligaments that accept the longitudinal sliding movement of the patella above
the femur. The collateral ligaments are arranged along the outer sides of the joint capsule, while
inside the capsule, the cruciate ligaments play a role in controlling the movement of the tibia and
patella. Of equal importance in maintaining stability are the muscles that support the knee.[10]

At the knee level, there are three joints: femur-tibial (the actual knee joint), femur-patella
(participating in the composition of the knee joint) and the superior tibio-fibular joint.

The femoral-tibial joint is the largest and strongest joint of the body. Structurally, it is an
imperfect trochlearthrosis and therefore has two menisci in its constitution. The lower extremity
of the femur has the two condyles, separated from the intercondylar cavity and the trochlea and
covered on the surface by a hyaline cartilage. The upper extremity of the tibia presents two
glenoid cavities covered by hyaline cartilage, separated from each other by two tubercles
(internal and external) of the bone massif belonging to the tibial spine. The distal ends of the
cruciate ligaments are inserted on the tibial spine. The posterior face of the patella is divided into
two lateral facets by a chamfered ridge and is covered by hyaline cartilage.

Since there is no perfect congruence between the articular bone surfaces of the femur and
tibia, between them it developed, on each cavity glenoid one meniscus each. The external
meniscus has a circular shape, and the internal one the shape of the letter C.[6]

Internal meniscus, through its anterior horn, it is fixed to the anterior edge of the tibial
plateau, immediately in front of the anterior cruciate ligament, and through its posterior horn, on
the retrospinal surface, immediately behind the insertion of the posterior cruciate ligament.

The external meniscus, through its anterior horn, is fixed on the prespinal surface,
immediately before the spine and on the external face of the anterior cruciate ligament, and
through its posterior horn, it is fixed on the internal tubercle of the tibial spine. The two menisci
are joined at their anterior part by a delicate formation called the transverse ligament which is
surrounded by the anterior fat cell bundle of the knee.

These menisci, not being strictly cartilaginous, have greater elasticity and deformability
than normal cartilage. The internal part of the meniscus does not contain vessels, but in the
capsular part they are abundant.

The bone segments in the joint are held together by a joint capsule strengthened by six
ligaments. The articular capsule is a fibrous sleeve, which is fixed all around, very close to the
border of the articular cartilages, laterally on the menisci and forward on the jugal ligament,
reaching the tibia. It is very resistant, it can withstand pulls greater than 300 kg. The six
ligaments are:

1. the anterior (patellar) ligament — represents the terminal tendon of the quadriceps, it stretches
from the patella to the anterior tuberosity of the tibia, it is widened transversely, thick and very
resistant.

2. the posterior ligament (Winslov) — it is confused with the insertions of the twin muscles (of
the triceps surae). The middle part is in the intercondylar cavity and is confused with the
insertions of the ligaments crossed.

3. the internal lateral ligament - they are inserted high on the tuberosity of the internal femoral
condyle, and low, on the uppermost part of the internal face of the tibia.

4. external lateral ligament - they are inserted high on the tuberosity of the external femoral
condyle, and low, on the antero-external side of the head of the fibula.

Cruciate ligaments are found in the intercondylar cavity.
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5. the anterior cruciate ligament inserts above, on the posterior portion of the external condyle
and goes down, forward and inward to insert on the antero-internal part of the tibial spine and on
the prespinal rough surface, between the insertions of the anterior horns of the menisci.

6. the posterior cruciate ligament inserts on the posterior portion of the internal condyle and runs
downward, forward, and inward to insert behind the tibial spine.

7. the synovium of the knee covers the inner face of the capsule; it adapts to all the bottoms of the
capsular bag and is interrupted at the level of the insertion of the menisci, dividing into two
portions: one suprameniscal, which represents almost the entire synovium, and another
submeniscal, much smaller in size. The synovium of the knee communicates in almost 1% of
cases with the synovium of the superior tibio-fibular joint. [6]

The femoral-patellar joint is a trochlearthrosis, being made up of the trochlea of the lower
extremity of the femur and the posterior face articular of the patella. The capsulo-ligamentary
apparatus is confused with that of anterior face of the femur-tibial joint.

The muscles involved in knee movements are:

a) thigh muscles (anterior: quadriceps, tensor fascia lata, internal rectus, tailor and posterior:
hamstrings), biarticular muscles;
b) calf muscles , popliteus and thin plantar.

Static knee

The biomechanical axis of the femur which, passing through the center of the femoral
head and through the intercondylar cavity, makes a 10° angle open upwards with the anatomical
axis of the femoral body. Relative to the anatomical axis of the tibia, the anatomical axis of the
femur is slightly inclined outwards, thus forming an open angle of 170° - 177°.

Biomechanics of the femur-tibial joint

The femoral-tibial joint has only one degree of freedom and consequently presents two
main movements: flexion and extension of the calf on the thigh, movements to which are added
secondary ones such as: internal rotation and external rotation. The joint also shows very low
amplitude lateral tilting movements. The average amplitude of active flexion and extension
movements is 135°, and of passive ones 150°. The movements are performed in the sagittal
plane, around a transverse axis that passes through the two femoral condyles. The femur-tibial
joint works according to the principle of a third degree lever, by moving the femur on the fixed
tibia (example: support on the ground), by moving the tibia on the fixed femur (example: sitting
position) or by moving the two bones simultaneously (example: when walking, when the leg is
pendulous).

The flexion movement is the one through which the back of the calf approaches the back
of the thigh. It runs around several axes. The beginning of the flexion movement is done more by
rolling, and the end more by rotating in place around a fixed axis. When the flexion reaches 70°,
an internal rotation movement is also associated, which can reach up to 20° amplitude. The
motor muscles for flexion are: the biceps femoris and the semimembranosus, as the main
muscles, but the semitendinosus, the twins, the popliteus, the thin plantaris, the internal rectus
and the tailor also intervene. The limitation of the flexion movement is achieved by the meeting
of the posterior face of the calf with the posterior face of the thigh.[6]

The extension movement is the one through which the back of the calf moves away from
the back of the thigh. At the beginning of the movement, the extremity of the femur rotates, then
it rolls on the tibial plateau, until the long axis of the calf ends up continuing the long axis of the
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thigh. The extension movement is also associated with an outward rotation movement of the calf
on the thigh. Motor muscles of extension they are primarily the quadriceps and the tensor fascia
lata. Together with the quadriceps tendon, the patella, the patellar fins and the patellar tendon,
they form a complex knee extension apparatus. The extensors act with all their force when
forcefully extending the flexed knee or when forcefully locking the knee in slight flexion, as in
physical activity. The extension movement is limited by the posterior ligament of the joint, the
anterior cruciate ligament, and accessoryly by the posterior cruciate ligament, the hamstring
muscles and the anterior ligaments that extend during extension.
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Figure 21 [Vaughan, 1999]

Internal and external rotation movements are associated with flexion and extension
movements. The cruciate ligaments also intervene, which rotate the lower leg outwards the final
position of flexion and into the final position of extension. The amplitude of the active rotation
movement is 15° - 20°, and of passive rotation of 35° — 40°. External rotation is performed by
the biceps femoris and rotation. Inside it is performed by: semimembranosus, semitendinosus,
popliteus, rectus intern and tailor. In external rotation, the lateral ligaments expand again the
cruciate ligaments relax, in time in the internal rotation se the cruciate ligaments are stretched
and the lateral ligaments are stretched.

Lateral movements are limited by the lateral ligaments especially during walking, when
they are put under maximum tension with knee extension. In full flexion, the external lateral
ligament relaxes, but the internal one remains slightly stretched. In semiflexion, however,
maximum relaxation of the ligaments is obtained. Cruciate ligaments limit forward and
backward movement of the tibial plateau on the femoral condyles, when the knee is extended.
The anterior cruciate ligament limits forward movement, and the posterior one - backward
movement. The anterior cruciate ligament stretches in extension, relaxes in slight flexion, and
stretches again in hyperextension. The posterior cruciate ligament stretches in full flexion,
relaxes in semiflexion, and stretches again slightly in extension.[6]
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Biomechanics of the menisci

Although solitary on the tibia, the menisci move in flexion, from front to back on the
tibial plateau, but they also approach each other slightly, through the posterior extremities. In
extension, the menisci move in the opposite direction, i.e. back to front, touch the front edges of
the tibial plateau and move slightly away from each other. They also move together with the
tibial plateau in relation to the femoral condyles, always being on that part of the plateau that
bears the pressure of the condyles. Thus, in extension, the condyles slide forward, pushing the
menisci in front of them, and in flexion, the condyles slide backward, pushing the menisci behind
them. In external rotation of the calf, the anterior part of the medial meniscus follows the capsule
to which it attaches and moves posteriorly forward and internally outward, while its posterior
part is pushed back by the femoral condyle.

The role of the menisci:
1. It fills the free space between the curved surface of the femur and the flat surface of the tibia
and thus prevents the protrusion of the synovium and the capsule into the joint cavity during
movements.
2. Centers the support of the femur on the tibia during movements.
3. It participates in the lubrication of the joint surfaces, ensuring the uniform distribution of the
synovium on the surface of the cartilages.
4. Plays the role of a shock absorber between the bone extremities, especially in hyperextension
and hyperflexion movements.
5. They significantly reduce the friction between the bone extremities.[6]

Biomechanics of the femoral-patellar joint

The patella is held in place by a complicated system of reins, of muscular, ligamentous
and tendinous origin. In the vertical direction, it is fixed by the patellar tendon and the
quadriceps tendon - only it is a motor - and stresses the patella, pulling it out and applying it
strongly in the trochlear groove. These tendons make an outward open angle between them. In
the transverse direction, the patella is supported by the two patellar fins. The internal fin extends
from the internal edge of the patella, to the internal face of the internal condyle, it is strengthened
by the insertion of the internal vastus and the internal meniscus-patellar ligament and is
particularly stressed. The external fin extends from the external edge of the patella, to the
external face of the external condyle, is strengthened by the vastus externalus, fascia lata and the
external meniscus-patellar ligament and is less developed. Outside of these formations, a series
of fibrous elements cross over the patella, forming a veritable network. It is about the expansions
of the tailor, the fascia lata, the aponeurosis gambiere and the rectus anterior.

The role of the patella:
- in extension, keeps the tendon away from the femoral trochlea;
- increases the lever arm of the quadriceps, displacing the quadriceps tendon relative to the
rotation axis of the knee, easing the activity of this muscle;
- in flexion, being pulled by the patellar tendon, the patella progressively contacts the articular
surface of the trochlea and enters the trochlear groove; starting from the top and slightly from the
outside, it descends towards the median line, passes over the vertical line of the trochlea, then,
once it enters the groove between the two condyles, it goes outwards again, so that at the end of
the flexion movement it covers the condyle exclusively external.[6]

Integrated into the triple extension chain of the lower limb, the knee joint actively
participates in daily activities. To carry out daily activities, the knee uses approximately
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110° flexion-extension and 10—15°abduction-adduction. Normal walking involves from full
extension to70° flexion, and going down the stairs to 90°flexion. The sitting position in an
armchair requires more than 90°.

Figure 22 | Popescu and Trandafir, 1998]

Regarding the movement of the articular surfaces, it should be specified that in the
femoral-tibial joint, although the movement is carried out in all planes simultaneously, it is
minimal in the transverse and frontal planes, and in the femoral-patellar joint, the movement is
carried out in the frontal and transverse planes simultaneously.

The axes of the femoral and tibial diaphyses form an open lateral angle of 173°. On the
other hand, the rotation centers of the three main joints of the lower limb are located in a frontal
plane on the same line called the mechanical axis of the lower limb. The mechanical axis
overlaps and coincides with the anatomical one only at the level of the calf. At thigh level, the

anatomical axis is laterally offset 7° from the mechanical one. Due to the inter-articular distance
of the hips greater than the distance between the ankles (the support polygon), the mechanical

axis is at its most oblique downwards and medially 3° facing the vertical, and perhaps even more
oblique, the wider the pelvis is.

The joint is in balance and the projection of the body's center of gravity falls inside the
support polygon. In the bilateral support position, the knees support 85.6% of the body weight.
In the unilateral support position, the joint supports the weight of the supraarticular body and the
pendulous lower limb, i.e. 93% of the total body weight. [4]

Geometry of articular surfaces.

The surfaces of the proximal tibia and the distal femur have specific shapes that allow
one to exceed the other. The femoral condyles have a variable profile (figure 23, table 4). The
diameters of the tibial plateaus are larger than the diameters of the corresponding femoral
condyles (figure 24, table 5).

The dimensions of the tibial plateau are smaller than the distances of the femoral
condyles. The medial condyle of the tibia is concave superior (the center of curvature is located
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above the tibial surface) with a radius of curvature of 80 mm (Kapandji, 1987). The lateral
condyle is superior convex (the center of curvature is located below the tibial surface) with a
radius of curvature of 70 mm (Kapandji, 1987). The shape of the femoral surfaces is
complementary to the shape of the tibial plateau. The shape of the posterior femoral condyles can
be approximated by spherical surfaces.
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Figure 23 (Kaufman and Kai-Nan, 2000) Figure 24 (Kaufman and Kai-Nan, 2000)
Table 4
CONDITIONS
Side Medial
Parameters Symbo | Distance Symbol | Distance Symbol Distance
1 (mm) (mm) (mm)
Distance K1 31+23 K2 32+3.1
medial/lateral (male) (male)
28 +1.8 27+3.1
(female) (female)
Distance K3 72+4.0 K4 70+4.3
anterior/posterior (male) (male)
65+3.7 63+4.5
(female) (female)
The radii of K6 192+1.7 K7 20.8+2.4
curvature of sup.
posterior condyle
Epicondylar K5 90 + 6 (male)
width 80+6
(female)
The distance K8 459+34
between the sup
centers. condylar
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Table 5

Parameters symbols General Male Female
Tibial plateau widths (mm)
The medial plateau Tl 32+3.8 34+39 30+2.2
The side plate T3 33+2.6 35+1.9 31+1.7
Total width T1+T2+T3 76+62 | 81+4.5 73 +4.5
Tibial plateau lengths (mm)
Medial length Q4 48 +£5.0 52+34 45+4.1
Side length TS 42+3.7 45+3.1 40+2.3
Interspinal distance(mm) T2 12+1.7 12+0.9 12+2.2
Length of the intercondylar T6 48+5.9 52+5.7 45+39
area (mm)
Latine intercondiliara
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Figure 25

Figure 26

The geometry of the patello-femoral joint surfaces remains relatively constant during knee
flexion. The intercondylar angle, the angle formed by the half lines that pass through the

minimum and maximum points of the condylar profile, changes only with +3,4°for a knee

flexion from 15 to 75°(figure 25). Lateral and medial patellar angles change by less than one

degree during full knee flexion (figure 26). [4]
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5.2. Biomechanical models of the knee

The movement of the knee takes place in a wider framework of the global configuration
of the movement of the entire human body, when it performs a certain activity. Its movement is
the result of the complex interaction of all parts of the body that take part in the performance of
that activity, be it walking, running or other movements, so mathematical modeling must take
into account the physical, geometric and dynamic constraints that exist in the knee at every
moment imposed by the movement of the whole body.

The joint can be mathematically modeled using a transformation matrix (Nordin and
Frankel, 1989). Parametrizing the transformation we can manipulate the degrees of freedom of
the joint movement between the four bones of the knee joint, so that we can describe the
movement.[3]

In the dynamics of the knee joint, the shape of the bones and the position of the ligaments
represent an important problem. Usually, the tibial plateau and the condyles are modeled by
geometric approximations or by descriptions using the finite element method, based on
computed tomography or magnetic resonance imaging (Frey, Riener, Michas, Regenfelder,
Burgkart, 2006). Regarding the modeling of the ligaments, we recall the work of the authors
Zheng, Fleisig, Escamilla, Barrentine (1998), in which the ligaments are modeled as
spring-damper type elements. The authors propose an analytical model in the sagittal plane for
ligaments, muscles and for the contact forces between bones and menisci, with the aim of
examining joint forces during movement.

Many works model the ligamentous structures and the posterior capsular tissue of the
knee joint through non-linear elastic elements, which take the external loads only when they are
in tension. Other works model the passive movement of the joint, without loading, using as
constraint elements three ligaments and the lateral and medial compartments of the knee
(Wilson, Feikes and O'Conner, 1998; Feikes, O'Conner and Zavatsky, 2000). In this case, surface
modeling errors can generate errors in kinematic and kinetic simulations of joint contacts.

The kinematic analysis of the movements of the knee joint is generally done from two
perspectives: a) the actual movements of the limb components interconnected in the joints and b)
detailed analysis of the movements of the joint surfaces (Kaufman and Kai-Nan An, 2000). The
effective movements are 3D joint rotations described with the help of Euler's angles. The 3D free
translations and rotations of the joints can also be described with the help of the screw axis
system (Kinzel, Hall and Hillberry, 1972; Spoor and Veldpaus, 1980; Woltring, Huiskes,
deLange and Veldpaus, 1985).

The classification of the biomechanical models of the human knee can also be made
according to the planes in which the movement is performed: a) 2D models that consider the
movement only in the sagittal plane and b) 3D models (Shelburne. Pandy, Anderson, Torry,
2004). The movement of the surfaces in the femoral-tibial joint is minimal in the transverse and
frontal planes, although it is carried out in all planes simultaneously. In the femoral-patellar joint,
the movement is carried out in the frontal and transverse planes simultaneously.[4]

The 2D models described by Morrison (1970), Moeinzadeh (1981), Moeinzadeh, Engin
and Akkas (1983), Moeinzadeh and Engin (1983), (1988), Tumer and Engin (1993), Tumer,
Wang and Akkas (1995), Abdel-Raham and Hefzy (1991), (1993) and Ling, Guo and Boersma
(1997) can be understood as different versions of the same dynamic model consisting of two
rigid bodies, the fixed femur and the mobile tibia connected by ligaments and having a single
point of contact.
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Hefzy and Abdel-Raham (2000) describe a 3D version that adopts the same coordinate
system introduced by Grood and Suntay (1983).

Starting with Elftman (1939), research attempts to model the movement of joints by
exchanging different input data with output data; the input data, such as the forces and moments
applying to the joints, being determined from experimental measurements regarding the
movement. The mentioned models cover the following research areas: a) joint structure,
b) movement mechanism formation, c) kinematic analysis, d) kinetostatic analysis with force
classification, e) dynamics synthesis, laws of motion, geometric parameters, bone profile
modeling.

In the work of the authors Moeinzadeh and Engin (1988) the movement is described by
reducing a second-order nonlinear system of ordinary differential equations to a linearized
algebraic system. Thus, it is shown that the extension of the knee causes the elongation of the
lateral ligaments and the anterior cruciate ligament, which supports most of the load, but not the
posterior cruciate ligament.

Research groups Lew and Lewis (1978), Loch, Lou, Lewis and Stewart (1992) presented
empirically determined 3D models for ligament forces and knee joint contact. Knee joint
stiffness matrices were compared with experimental data, the model being used in a predictive
manner. Similar studies were carried out by Grood and Hefzy (1986) and Wismans, Veldpaus,
Janssen, Huson and Struben (1980).

The number of theoretical works is small compared to the experimental and practical
(surgical) works. The studied area is restricted and specialized for a certain purpose, breaking the
joint from the rest of the human body, which considerably influences the movement of each
joint. The movement of the knee joint depends on the movement of the entire human body.

For modeling the movement of the knee joint, the shape of the bones and the position of
the ligaments matter. Usually, the tibial plateau and condyles are modeled by geometric
approximations or by finite element descriptions, obtained from computed tomography or
magnetic resonance imaging (Frey, 2006). The finite element method (FEM) is used both in the
study of joint movement simulation problems and for the express determination of contact
stresses in a mobile joint or for the determination of friction in an artificial joint. When modeling
the articular surfaces using the MEF method, details and unevenness of the surfaces are often
neglected, because the geometry of the surfaces cannot be described with the help of a single
function. Other works model the passive motion of the joint without loading using five constraint
elements: three ligaments and the lateral and medial compartments of the knee (Wilson, Feikes,
& O'Conner, 1998; Feikes, O'Conner, & Zavatsky, 2000). Thus, surface errors can generate
important errors in kinematic and kinetic simulations of joint contacts.[4]

In the following, some of the relationships used to describe the surfaces of the femur and
tibia are presented. In the work of the authors Hefzy and Abdel-Raham (2000) the femoral
articular surfaces are studied as spherical parts while the tibial plateaus are considered as flat
surfaces. The equation of the femoral spheres, lateral and medial, described in the coordinate
system attached to the femur is:

F3) = —fr = (= B = (y— )7 + 1
in which the values of the parameters », 4, k£, and / are 21; 23.75; 18; 12 mm and 20; 2. 3; 16;
11.5 mm for the lateral and medial spheres respectively. The equation of the lateral and medial
tibial planes described in the coordinate system attached to the tibia is

glx',y)=my' =c¢
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where the values of the parameters m, ¢ are 0.358; 213 mm and —0.341; 212.9 mm for the lateral
and medial planes respectively. A three-dimensional model of the knee joint representing the
articular surfaces (cruciate ligaments, 1-4; collateral ligaments, 5-8 and capsule structure, 9-12)
is shown in figure 27.
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Figure 27 [Hefzy and Abdel-Raham, 2000]

The modeling of the articular surface of the knee must verify the conditions of natural
and geometric compatibility. The geometric compatibility conditions assume that the distance
between the contact points of the two surfaces is zero, so that penetration is avoided. The natural
compatibility conditions ensure that the normals to the two surfaces at the contact points are
collinear.

Shunji Hirokawa, Takashi Ueki, Ayaka Ohtsuki (2004) model knee joint surfaces with
irregularities also using a parametric polynomial function and Fourier series.

In the works of Wismans, Veldpaus, Janssen, Huson and Struben (1980), Engin and
Moeinzadeh (1982), Blankvoort, Kuiper, Huiskes and Grootenboer (1991), Tumer and Engin
(1993), the geometry of the surfaces of the two bones is described with the help of two 2D
polynomials. In general, it can be observed that small errors can lead to penetrations of the two
bones in contact. Delp and Loan (1995) present a method that uses polygons to represent bone
surfaces. Here, the natural compatibility conditions are not necessarily satisfied, so the normals
at the contact points are not collinear. In the works of Hart (1974), Scherrer (1977), Scherrer and
Hillberry (1979), Ateshian, Soslowsky and Mow (1991), Hirokawa (1991), Almond (1991),
Hefzy and Yang (1993), parametric surfaces with using cubic spline functions.

Mathematical formulations such as Bezier curves (Pierre Bezier 1962), B-spline and
NURBS (Farin 1992) are standardized tools for creating free forms, but they are not close
enough for modeling articular surfaces. [V. Mosnegutu, PhD Thesis, 2008]

In order to represent the various ligamentous structures and the posterior capsular tissue
of the knee joint, nonlinear elastic elements are used in many works that take the load only when
they are in tension.

The deformation of the ligament elements is given by Hefzy and Abdel-Raham (2000),
by the relation below and the threshold value is specified for ¢, =0,03.

Li—Lg:

g.o=-L 9
/ e
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where 7 are the current and initial lengths of the ligaments. Also using

L. :
g = ar Fxmf"f’ comPiEte can calculate the initial length of each ligament.
ar
For the size of the ligament forces, the authors Wismans, Veldpaus, Janssen, Huson and
Struben (1980), Blankevoort et al. (1991), Woo, Johnson and Smith (1993), Tumer and Engin
(1993) used the force-elongation relationship. For the j ligamentous elements it is proposed

o ;EJ,-ECI

F={K1(1,— Loy)’ 0S5 = 2
E2(L,—(1+2)L,)° & =28
where K1,and K2;are the stiffness coefficients of the j elastic elements, for the linear and
parabolic zones respectively, and L and L, are the initial and current lengths respectively.

In the paper Zhi-Kui Ling, Hu-Qing Guo, Stancey Boersma (1997) the following relation
expresses the non-linearity of the ligament forces for the lateral and cruciate ligaments,

kj-liinawj- — Istrxrtj-j ? : doco Inowj = L';tm"tj-
fmgg}. =
0 ; daca Inowj = lstar t;
where j represents the index of the different ligaments, /now the current length of the ligament
and / start the length of the stretched ligament, which is obtained from the initial length (the

length of the ligament in maximum extension) multiplied by its own deformation index ¢,
k ;represents the stiffness, and its volumes correspond to the data from the literature.

istart; = linitial; X &;
where the deformation index ¢, is also taken from the literature.

To calculate the length of each ligament, the authors Chittajallu and Kohrt (1995) use the
distance formula:

L= \HI[XTE - FFJE - I:YTE - YFsz

where X,,,Y,, are the coordinates of the insertion point on the tibia of the ligaments in the tibial

coordinate system. Here the resultant force in each ligament due to elongation/contraction, F,, is

given by
F—F VAL F L =Ly I L =Ly |
[

e Lin o 2L
where F is the force per extensible foreign unit of each ligament, AL, is the variation in the
length of each ligament and L,, is the zero foreign length of each ligament. This formulation

generates a positive force only when the ligament is stretched beyond its own neutral length and
zero when the ligament is relaxed.[4]

To represent the ligaments in the work of the authors Zheng, Fleisig, Escamilla and
Barrentine (1998), spring-damper type elements are used, thus describing an analytical model in
the sagittal plane with the aim of examining the forces of the joint during movement.

In the doctoral thesis supported by Mrs. Valerica Mosnegutu in 2008, the 3D model with
12 degrees of freedom was presented, resulting from the analysis of two remarkable works in the
field - Shelburne, Pandy, Anderson and Torry (2004) and Wolf and Degani (2007).
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The first paper develops a model with 18 degrees of freedom and combines theoretical
and experimental aspects. The movement of the knee joint is modeled taking into account the
movements of the entire human body, in this case the leg. The authors study and explain the
nature of the forces transmitted by the ligaments to the knee joint. The most important aspects of
the analysis in this paper are: a) the analysis of the movements of the human body, b) the
analysis of the reaction forces of the ground, c) the analysis of the forces acting on the knee joint.

The disadvantage of this model is that the parameters and constants that appear in the
modeling are assumed to be known a priori from experience. However, experience is not always
able to directly provide these values by measurement, for their finding another model or an
inverse problem is required.

The second work aims to develop an expert system for identifying knee pathology based
on kinematic observations. A 6-degree-of-freedom model is described using screw theory and a
screw-type representation of motion.

The degrees of freedom are represented as screw moment parameters (ISP), which are
used to know the knee movements. The flexion of the joint with different pathologies is
processed with an optical tracking system and then analyzed and diagnosed through the prism of
this model. The optical information is composed of snapshots of the position and condition of the
bones. ISP is calculated to know the movement from two successive sequences. It is observed
that the movement is very varied, it is specific to each patient and it is possible to classify the
movements in relation to different pathological deficiencies. Thus, specific clusters appear,
larger or smaller, that reflect different pathologies, such as ACL/PCL deficiency, or walking
deficiencies due to damage to the synovial fluid.[4]
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Figure 28
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The elements of the knee joint considered for modeling are: femoral condyles, tibial
plateau, AC articular cartilage, menisci, four ligaments and two tendons, namely: anterior
cruciate ligament ACL, posterior cruciate ligament PCL, medial ligament MCL, lateral ligament
LCL, quadriceps tendon QT and the PTL patellar tendon (figure 28). The articular surfaces are
represented by the curved surfaces of the femoral condyles, the surfaces of the tibial coat and the
facets of the patella. The AC articular cartilages serve as supporting surfaces, and the menisci as
mobile supports. The muscles (quadriceps) in front of the femur, QM, straighten the knee
(in extension), and the muscles behind the femur, the popliteus tendon, support the knee (in
flexion). The patella works as a real lever for the quadriceps muscles, increasing their efficiency.
The QT quadriceps tendon and the PTL patellar tendon enclose the patella, helping with its
mechanical movements.

Mrs. Valerica Mosnegutu solves the following direct problem: Given the forces in the
muscles, tendons and ligaments, the internal-external rotation and flexion-extension angles of
the knee, determine the movement of the patella relative to the femur during flexion and
extension. And inverse problem: 7o determine the muscle forces, internal-external rotation and
flexion-extension angles from the experimental data of the movement of the patella during
flexion and extension. In constructing the inverse problem, it is necessary both to model the
movement of the patella and to model the geometric shape of the patella.

For the movement of the patella (jointly linked to the knee joint), build a model with 12
degrees of freedom. It introduces a global coordinate system for the knee joint and a local
coordinate system for the femur, tibia and patella.

Figure 29

It is assumed that the position of the knee joint is described in relation to a global
coordinate system and 3 local coordinate systems attached to each bone (figure 29): the femur

(xf, yf,z/.), the tibia (x,,y,,z )and, respectively, the patella (xp, yp,zp). The origins of the

coordinate systems attached to the tibia and femur are in the centers of the intercondylar areas.
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The origin of the patella coordinate system is located at the center of gravity of the patella. For
all three systems, the axis xis oriented medially, the axis y, posterior, and the axis z, superior,

parallel to the axes of the global system (x,y,z). In the global coordinate system, the plane
(x,y)is defined as the coronal plane and the plane (y,z)as the sagittal plane. In the global
reference system, a point belonging to the articular surface, which we denote by TI', is defined by
the coordinates (x,y,z), and in the local coordinate systems by (x'L, y'L,z'L), where the subscript
L indicates the local system.
Transformation from system (x'L, y'L,z'L) to system (x,y,z) is given by x, =u, + R, x,, ,
where R, is the rotation matrix R =R(z,¢)R(x,0)R(z,y), with:
cosy —siny 0
R(z,y)=|siny cosy 0
0 0 1
1 0 0
R(x,0)=[0 cos® —sin6
0 sin® cos6
cos¢p —sing 0
R(z,¢)=|sing cosp 0
0 0 1

where uis the translation vector.

Figure 30

It is considered that the movement of the patella relative to the femur is described by 12
generalized coordinates (figure 30). The ball joint is considered as a massless body, and its
motion is defined by a sequence of three rotations around the local axes. The displacement of the
origin of the reference system attached to the patella compared to the origin of the reference
system attached to the femur is defined by three translations along the three axes.

The movement of the knee joint relative to the global coordinate system attached to the
pelvis is described by 12 generalized coordinates (degrees of freedom), namely: antero-posterior
translation of the tibia relative to the femur ¢,, proximo-distal translation of the tibia relative to
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the femur ¢,, medial-lateral translation of the the tibia in relation to the femur g¢,, the
antero-posterior translation of the patella in relation to the femur ¢,, the proximo-distal
translation of the patella in relation to the femur g¢,, the medial-lateral translation of the patella in
relation to the femur ¢, ; varus-valgus rotation of the knee joint ¢, , internal-external rotation of
the knee joint ¢,, flexion-extension rotation of the knee, ¢, patella g,, rotation, tilt rotation
of the patella ¢, and flexion-extension rotation of the patella ¢,,. Thus, the vector
q=1{4,,9,.4s.-..q,,} of generalized coordinates is obtained, of size 12x1, coordinates that describe

the configurations of the tibia-femur and patella-femur joints.

Under the assumption that the patella tendon is inextensible and that the penetration
between the patella and the femur can be neglected, three holonomic constraints are defined for
the movement of the patella relative to the femur, which can be combined with the six balance
equations of the patellar moments and forces to provide a set of six algebraic equations for
patellofemoral mechanics:

12 _
p.(¢.F,)=0, i=12,..60r X (a,q,+bF,5,)=0,k=12,..,6
j=1

with F , the dimension vector 6x1, of the forces applied to the patella, from the QM and QT
muscles, &, is Kronecker's symbol, and the coefficients a;are l;/ determined experimentally.

Realizing a one-to-one correspondence between a noted parameter ¢ (time) and the angles
of extension or flexion, the translation or rotation ¢ depends on this parameter ¢.

The equations of motion of the knee joint can be written as follows

A(q)q+C(q,q')+Mm (q)Fm +M, (q)F, +T(q,cj) =0
where A(q)is the dimension mass matrix 12x6, C(g,¢)is a dimension vector 6x1 containing
moments and centripetal and Coriolis forces resulting from the movement of the femur, F is a
dimension vector of 6x1the forces applied from the QM and QT muscles, M, (¢)is a dimension
matrix 12x6describing the moment arms of the applied muscle forces, F is a dimension vector
6x1containing the forces applied from the four ligaments and two tendons, M,(q)is a
dimension matrix 12x 6 describing the moment arms of the knee tendon and ligament forces, and
T(gq.,¢)is a dimension vector of the 6x 1 external moments applied to the knee joint.

The considered model does not take into account the fact that the joint of a normal knee
is surrounded by the synovial membrane that contains cells that secrete the synovial fluid. The
synovial fluid properties of a diseased knee vary considerably and are altered compared to those
of a healthy knee (Chiroiu et. al ., 2010; Dowson, 1990). The experimental results highlighted an
interesting phenomenon, namely the decrease of the viscosity coefficient of the synovial fluid in
relation to the volume of the synovial fluid in the case of normal walking. The effect is similar to
the Fahraesus and Lindquist effect observed experimentally in blood flow through small vessels
(Munteanu, Chiroiu and Chiroiu, 2002; Munteanu, Donescu and Chiroiu, 2006).[4]
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6 . CONCLUSIONS AND PERSPECTIVES

The elbow and knee joints are complex pendulum-type joints that can be modeled either
as articulated bars or as systems made up of masses and springs.

The elbow joint is a trochlearthrosis with only one degree of freedom. It is made up of the
humerus of the arm and the radius and ulna of the forearm. This joint allows only the execution
of flexion and extension movements.

The knee joint consists of the lower end of the femur, the upper extremities of the tibia
and fibula, and the patella. This joint has only one degree of freedom. The main movements of
the knee are: flexion and extension of the calf on the thigh. Secondary movements are: internal
rotation and external rotation.

For a proper modeling of them, they must be "broken" from the rest of the human body.
Models are created to precisely accomplish a specific problem.

The next period of research will follow the validation of the theoretical results obtained at
this level and through own experimental data. It will also aim to carry out a comparative study in
relation to the normative documents regulating the negative and positive effects that vibrations
have on the joints of the human body.
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