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1. Introduction 
 

 

1.1. General introduction 

     No matter if we talk about LiDAR point clouds or orthorectified images, the extraction of 

geospatial data from photogrammetric or remote sensing products particularly interests 

researchers in our field. Until recently, the elements of the map were, exclusively, digitized, 

lately semi-automated or even automated extraction is the solution used by most 

companies. 

     The classification or segmentation of point clouds or images can be done by various 

techniques and based on a wide range of algorithms. The most used methods are those 

based on Machine learning or even on deep artificial neural networks. 

     Local administrations and not only have to perform complex tasks for urban planning. 

Therefore, they need a virtual representation of their city. Thus, the need to move from 2D 

to 3D modelling is obvious and extremely necessary. 3D models of cities are becoming a 

concern for the national mapping agencies in many countries all around the world. 

 

1.2. Motivation   

     In most of the Ph.D. thesis I analyzed, as well as in articles, the topic of 3D building 

modelling is debated at individual building level (churches, monuments, etc.) or in small 

groups of buildings. In my doctoral thesis, I set out to generate the 3D building models for a 

large area, such as a big city, represented as the municipality of a county in Romania. The 

difficulty of generating 3D building models lies, in this case, a large amount of data and the 

increased need for hardware-software performance. Identifying a workflow that leads to 

good modelling quality is another big challenge. 

 

1.3. Objectives and purpose 

     In this thesis, I set the focus on buildings. 

     The major objectives of the thesis are: automated extraction of building contours from 

both point clouds and orthorectified images and generation of 3D building models with the 

level of detail LoD1 and LoD2. Besides these objectives, which emerge from the title of the 

thesis, I set out to provide a specialised and current framework in the fields of laser scanning 
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and aerial photogrammetry in terms of workflows, data processing and state-of-the-art in 

3D building modelling. Another goal is to identify an optimized workflow for classifying ALS 

point clouds. 

     I performed the tests on an area of Arad with low and medium height buildings. I chosed 

this area because of the challenges that the vegetation creates both in extracting the 

buildings from point clouds and from photogrammetric images. Finally, I generated 3D 

building models on the entire surface of the Arad municipality. 

     The purpose of the doctoral thesis is to create a framework for the authorities to take the 

steps in order to launch a national project to generate 3D building models for all the cities 

in Romania and to publish them, as open data, on a national portal. 

 

1.4. Organization of the Thesis 

     I structured the thesis into 8 chapters: 

     Chapter 1, called Introduction, contains a brief presentation of the Ph.D. thesis, the 

objectives, the primary motivation for the topic chosen, and the description of the structure 

at the chapter level. 

     Chapter 2, called Geospatial Data Acquisition by Laser Scanning, covers the history of 

LiDAR technology, the description of traditional airborne laser scanning systems (operating 

principle, the detailed panel of systems produced by the large companies in the field, their 

applications, complete workflow for obtaining spatial data by laser scanning, etc.), the 

description of the two modern scanning technologies: SPL (Single Photon LiDAR) and 

Geiger-mode, as well as the description of the LiDAR data set that I will use in the case study. 

     Chapter 3, entitled Acquisition of geospatial data by aerial photogrammetry, includes 

information about the photogrammetric evolution from analog-to-digital, the  characteristics 

of nadir and oblique top cameras, the steps of a photogrammetric workflow, from flight 

planning to orthophotos generation (DTM/DSM orthophotos), and the description of the 

photogrammetric data set for the case study. 

     Chapter 4, called Extracting data from LiDAR point clouds, describes the segmentation 

and classification methods for point clouds, and the case study part, which will detail the 

proposed workflow for LiDAR point cloud classification, including the accuracy assessment 

based on various machine learning algorithms. In the workflow, I will describe my approach 

to the dynamic neighborhood selection, use a series of 3D point features for classification, 

and test the Weka software for supervised point cloud classification. Until now, this software 

was used to solve the problems of extracting patterns from large data sets, with applications 

in banking, diagnostics, marketing, and sales. 
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     Chapter 5, called Extracting data from orthorectified images, describes the most popular 

methods of semantic segmentation of images based on Machine learning techniques and 

a review of the most popular artificial neural network (ANN) architectures for classification 

and semantic segmentation of images. In the case study part, I will describe all the stages 

of the workflow for the semantic segmentation of images, both with Machine learning 

algorithms and through deep neural networks. 

     Chapter 6, called 3D Building Modelling based on point clouds, summarizes the general 

framework for 3D building modelling, starting with the generation methods, continuing with 

current information about the CityGML standard (City Geography Markup Language), 

detailing applications of 3D building modelling, and highlighting international state-of-the-

art on the topic. As a preamble to the case study, I will describe some software that allows 

the generation of 3D models and I will identify the geometric and semantic errors 

encountered in 3D building modelling. The case study will include the extraction of the 

buildings footprints from the point clouds previously classified in Chapter 4 and the 

regularization of their shape. I will address the problem of 3D building modelling in two 

software: 3dfier and Esri CityEngine. 

     Chapter 7, called Generation and online distribution of 3D building models for the city of 

Arad, describes the 3D modelling at the city level, based on the data from the national 

database TopRo5 and from the LAKI II project. I will do the modelling in the CityEngine 

software. In the end, I will evaluate the quality of the 3D models and perform a study to 

compare the models generated using only LiDAR data and the ones generated with the 

current workflow. I will publish 3D building models for the city of Arad in the ArcGIS Online 

environment. 

      Chapter 8, entitled General conclusions, original contributions, and future perspectives, 

contains the general conclusions on the research carried out in this thesis, the original 

contributions made, as well as future research perspectives. 
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2. Geospatial Data Acquisition by Laser Scanning 

 

2.1. Introduction  

     In this chapter, I will present the workflow for obtaining geospatial data by laser scanning, 

from the data acquisition flight planning to the generation of the final products. In the 

preamble, I will present the history of LiDAR (Light Detection and Ranging) technology, 

starting from 1930 until now, but also information related to the ALS systems (Airborne 

Laser Scanning) operation. I will detail the ALS systems produced by top companies in the 

field and their applications. In subchapters 2.7 and 2.8 I will present the two modern 

scanning technologies: SPL (Single Photon LiDAR) and Geiger-mode. In the end, I will 

describe the LiDAR data set for the city of Arad, the residence of Arad County, Romania, from 

the project Geographic information for environment, climate change and EU integration - 

LAKI II (Land Administration Knowledge Improvement) of the National Agency for Cadastre 

and Land Registration (ANCPI). 

 

2.2. Short history 

     E.H. Synge introduced the LiDAR concept in the 1930s, and was supported by A. Einstein, 

in publishing his ideas for a new method of microscopic imaging in which an optical field 

scattered by a small gold particle could be used as a light source. The technology evolved a 

lot, so that in 1992, Geiger detectors were developed, by researcher R. Marino. In 2017, Leica 

Geosystems manufactures the SPL 100 scanner, which ensures large-area mapping at a 

minimal cost. 

 

2.3. Introductory notions 

     LiDAR (Light Detection And Ranging), also known as LADAR, is an active remote sensing 

technology. The LiDAR scanner emits an intense and concentrated beam of light and 

measures the time required for reflections to be detected by the sensor. This information is 

used to determine the distance to objects (Carter, et al., 2012).  

 

2.4. Classification of laser scanning systems 

     The classification of laser scanning systems can be done according to different features, 

such as: 

1. the measurement technique: continuous wavelength or pulsed laser system; 
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2. the platform used: airborne, satellite, or terrestrial system; 

3. the system type: simple or hybrid LiDAR system; 

4. the receiver type: linear mode, Geiger (GmLiDAR) or single-photon system; 

5. wavelengths used: topographic or bathymetric system; 

6. the number of light sources: single or multispectral wavelength system. 

 

2.5. Laser scanning applications 

     There are many applications of laser scanning, among which we can mention: large-area 

mapping, utility networks mapping, flood risk modelling and hazard maps creation, as well 

as 3D modelling, etc. 

 

2.6. Traditional airborne laser scanning 

     Airborne laser scanning (ALS) enables point clouds acquisition, using aircraft, helicopter, 

or UAV platforms. In the following, I will present information about airborne laser scanning 

systems mounted on aircraft platform. 

2.6.1. Physical principles of ALS systems 

 
Figure 2.1 ALS system principle 

 (Fernandez-Diaz, Carter, Shrestha, & Glennie, 2014) 

     Figure 2.1 displays the measured scanning flight lines, using an oscillating mirror for the 

deflection of the laser beam, which determines the scan pattern in the form of the letter Z. 
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2.6.2.  ALS system components 

   Figure 2.2 shows the basic components of an ALS system: 

1.  airborne segment: airborne platform, LiDAR, position, and orientation system (POS); 

2.  ground segment: GNSS reference stations and hardware-software processing 

component.  

 

 

 

 

 

 

 

 

 
Figure 2.2 ALS system components 

2.6.2.1. Laser scanner 

     The laser scanner comprises the ranging unit, the opto-mechanical scanner, and the 

control, monitoring, and recording unit. 

2.6.2.2. POS system 

     The POS system comprises two components: IMU and GNSS. The GNSS system also 

uses ground reference stations, which must be on the scanning surface so that the distance 

between them and the ALS system does not exceed 25 km (Wehr, 2018).  

2.6.3. Reflectance and interaction with objects 

     Reflectance is defined as the ratio of the incident radiation on a surface to the reflected 

radiation on that surface. In terms of LiDAR system performance, this surface feature is very 

important. 

2.6.4.  The evolution of ALS systems  

     The global LiDAR scanner market has grown significantly in recent years because of the 

sector of the autonomous vehicles. In a top 10 of LiDAR instrument manufacturers, 

developed by (Chakravarty, 2019), the following companies stand out: 

 in Europa: 1st place - Hexagon Geosystems (Sweden), 3rd place - SICK AG (Germany), 

6th place - Riegl (Austria); 
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 in North America: 2nd place - Velodyne LiDAR (California, USA), 4th place - TOPCON 

(California, USA), 5th place - Trimble (California, USA), Teledyne OPTECH (Canada). 

2.6.5. Airborne laser scanning workflow  

     The workflow for generating geospatial products through laser scanning involves 

planning the scanning mission, acquiring, pre-processing, and post-processing the data. 

2.6.5.1. Flight planning 

     Based on the technical specifications that underlie any scanning project and with the help 

of a specialised program, the flight planning is performed. The first step is to choose the 

ALS system that is suitable with the project requirements. 

     Planning LiDAR scanning without overlapping swaths can lead to void areas; to prevent 

such a situation, it is recommended an overlap of at least 20%, and can even reach 50% 

where a high density of points is required (Heidemann, 2018).  For a good planning we must 

consider the local meteorological reports, the big topographic changes, the existing water 

basins, and the land cover. 

2.6.5.2. Field measurements 

     The field measurements comprises determining the coordinates of the points forming 

the control surfaces and of the checkpoints. We must survey these points in the field with a 

planimetric and altimetric accuracy superior to that of the LiDAR points. 

2.6.5.3. Survey with ALS system 

     Before the actual scan, the instrument must be calibrated; this step is performed at each 

installation of the system in the aircraft or after any change in the system’s installation, by 

measuring the 3D vectors of the lever arms. The pilot follows the flight plan, through the 

flight guidance software, and at the end of the scanning mission, the LiDAR and POS 

measurements are stored on memory cards or hard disks, and the measurements from the 

ground reference stations are stored locally. 

2.6.5.4. LiDAR data processing 

     After the sequential processing and calibration of the data, the geocoded measurements 

are stored in chronological order, with the following attributes: timeGPS, XWGS84, YWGS84, ZWGS84, 

intensity.  

     To ensure data quality, strip adjustment should be performed based on the overlapping 

areas between the swaths (including the crosslines). 

     The standard point cloud storage format is the binary las format, defined by ASPRS 

(American Society for Photogrammetry and Remote Sensing). One attribute of the 3D points 

is the class. In version 1.4 of the las files, are presented 256 standard classes, divided in: 21 

defined by ASPRS (eg Rail, Building), 42 reserved, and 203 user definable (ASPRS, 2019). 
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     The absolute accuracy of the 3D points is influenced by the GNSS-IMU solution, the 

parameters of the laser scanner, the quality of the calibration, the quality of the strip 

adjustment and the accuracy of the coordinate transformation in the national reference 

system. In the subchapter I will describe the absolute planimetric accuracy, the relative and 

the absolute altimetric accuracies. 

2.6.5.5. Final products generation 

     The final products that can be generated based on LiDAR 3D point clouds are 2.5D digital 

models (digital terrain models - DTM, digital surface models - DSM, normalized digital 

surface models - nDSM), contour lines, 2D vector elements (extracted: automatic, semi-

automatic or digitized) and 3D models of objects. In this subchapter are being detailed the 

most common products: DTM, DSM, nDSM, and contour lines. 

 

2.7. Single Photon LiDAR  

     SPL stands for Single Photon LiDAR. The operating principle of SPL instruments is to emit 

a single laser pulse and divide this beam through a diffractive optical element into multiple 

beamlets, to increase the density of the points. The advantages of SPL systems (Musäus, 

2019) are: 

 high flying heights, while maintaining the density of the points; 

 bigger scanning rate than LiDAR linear systems (> 450km2/h at a density of 

8points/m2); 

 penetrates clouds and low altitude fog, allowing the extension of scanning 

intervals; 

 the altimetric root mean square error <10cm, and the planimetric one <15cm. 

 

2.8. Geiger-mode scanner 

     L3Harris Technologies Inc. developed, in 2015, the LiDAR instrument that uses GmAPD 

(Geiger-mode Avalanche Photo Diode), with a matrix of 32 x 128 detectors (SPAR 3D, 2016). 

The Geiger-mode scanner acquires much denser point clouds in a much shorter time and at 

reduced prices. Collecting data from multiple angles leads to improved vegetation 

penetration, elimination of shaded areas and data voids. 

 

2.9. LiDAR data for the case study 

     The study area is the city of Arad, the residence of Arad County, Romania. LiDAR data are 

part of the LAKI II project, for which I performed quality control. One objective of this project 

(ANCPI, 2016) was to generate DTM and DSM by aerial scanning LiDAR with a density of  

8points/m2 for areas with high risk of floods in Arad and Bihor counties, for an area of 



Contributions to the automation of geospatial data extraction for 3D modelling                        Bină Iuliana Maria 

 

15 
 

approximately 10000km2. They performed the flight with the RIEGL Q780 scanner, mounted 

on an aircraft platform. The point cloud for the city of Arad comprises over 2 billion points, 

with returns from 0 to 7. The point clouds were classified into: ground points (class 2), bridge 

points (class 10), and unclassified points (class 1). On the area of interest were generated 

23 tiles of DTM, respectively DSM, with the resolution of 1m, in format geotiff. 
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3.  Acquisition of geospatial data by aerial 

photogrammetry 

 

3.1. Introduction 

     In this chapter, I will describe the stages of a photogrammetric workflow, from flight 

planning to the generation of final products. The traditional orthophoto based on DTM will 

be the preamble for the detailed description of the workflow for the true-orthophoto 

generation. The top nadir and oblique cameras will be also detailed. The focus will be set on 

oblique image acquisition and processing technology, given the innovative nature of this 

technology and the latest developments in terms of processing. The chapter ends with the 

presentation of the photogrammetric data set used.  

 

3.2. Photogrammetric evolution 

      Based on the method of stereomodels exploitation, three techniques are distinguished, 

which also represent the three great epochs of photogrammetry: analog, analytical and 

digital. 

      Analog photogrammetry was used between 1900-1960 and involved the acquisition, with 

classic analog cameras, of images on film (format 19x19cm or 24x24cm). In Romania, this 

image exploitation technique was used until the advent of digital photogrammetry. 

Analytical photogrammetry was used between 1960-2000 and resembles analog 

photogrammetry, with the difference that the stereorestitution device is analytical (eg 

Aviolyt Wild Bc2) and uses a computer, on which the elements are drawn in vector format. 

The map was obtained on a plotter. The digital era began with the same analog images, but 

the processing was done with specialised software for digital stereorestitution. Within this 

era, the orientation is performed in automatic or semi-automatic mode, the exploation of the 

stereomodel is interactive, and the photogrammetric products obtained are in a wide range. 

For some time, analog and digital cameras coexisted, simultaneously producing data for 

mapping purposes. 

 

3.3. Photogrammetry principles  

     The basic principle of photogrammetry is triangulation. Thus, to determine the 

coordinates of an object in the field, images are acquired on the object from two 

perspectives. Currently, two digital image acquisition technologies are used: with CCD or 

CMOS sensors. 
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    The classification of photogrammetric images (Upadhyay, 2013) can be done according 

to several criteria, including: 

1. the location of the photogrammetric camera at the time of collection: aerial or 

terrestrial; 

2. the angle at which the data is acquired from the nadir: vertical or tilted; 

3. the field of view (FOV) angle of the camera: normal, wide or super-wide FOV. 

     Digital image capture can be done either sequentially with pushbroom cameras (eg Leica 

ADS40) or by single exposure (eg Leica DMC). 

 

3.4. Aerial photogrammetric systems 

3.4.1.  Vertical cameras 

     Verical images allow optimal observation of roofs, offer the advantages of equal 

illumination of the entire surveyed area and constant spatial resolution. The first commercial 

aerial images were acquired in England in the 1919s by the company Aerofilms, which later 

carried out extensive photography activities for mapping in Africa, Asia, and England (Aerial 

photography, 2017). Currently, there are many aerial camera companies on the 

photogrammetric market, such as Leica Geosystems, Vexcel Imaging, Phase One, Teledyne 

Optech. 

3.4.2.  Oblique cameras 

     Oblique cameras have been used in the military sector in the USA since the 1930s. Over 

the years there were developed several types of oblique cameras (Remondino, Toschi, Nex, 

& Gerke, 2018): single-camera (VisionMap), 2 cameras (IGI Dual), 3 cameras (DLR-3K), 4 

cameras (Rolleimetric AIC x4), 5 cameras (Fairchild T-3A) or multiple cameras (Octoblique 

Midas). Oblique systems can have the following configurations: 

 Maltese-cross: has a nadir-oriented camera and 4 tilted cameras on two 

perpendicular directions, which take oblique images with an inclination of 40°-50°; 

 Fan (twin cameras - VisionMap A3 Edge); 

 Block (4 cameras arranged in a block - IGI Quattro-DigiCAM).  

 

3.5. Photogrammetric workflow  

3.5.1. Mission planning 

     Based on the technical specifications underlying the aerial photogrammetric project, the 

suitable sensor and platform are selected, and the flight planning is performed. There are 

various flight planning software packages, either provided by sensor manufacturers or by 

independent developers (Pepe , Fregonese , & Scaioni , 2018). 
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3.5.2. Field measurements and image acquisition 

     The planned GCP (ground control points) and checkpoints are surveyed in the field, using 

proper equipment and methods, so that the accuracy of the points is better than the one 

needed for the final product. Choosing the optimal period for performing the 

photogrammetric flight must consider the following aspects: 

o the sun angle must be greater than 30°, to limit the shadows in images; 

o the land surface must not be covered by snow or floods; 

o atmospheric conditions, such as fog, atmospheric veil, or dust, should be avoided. 

3.5.3. Tie points extraction 

     This step consists of extracting the corresponding points in two or more images with 

overlap. Automating this step, for oblique images, is a laborious task, because of the 

different perspectives and lighting under which the images are taken. Tie point identification 

can be based on the brute force strategy, which involves comparing each descriptor of 

image A with each descriptor of image B. This approach is simple but quite inefficient. 

Examples of alternative strategies are: FLANN (Fast Library for Approximate Nearest 

Neighbors), which uses a quick search structure, and MatchMe, which uses similarity 

measurements between descriptors (Shragai, Barnea , & Even-Paz, 2012). 

3.5.4.  Bundle adjustment 

     Following the bundle adjustment, based on the GCP coordinates, the internal orientation 

parameters, the coordinates and the rotation angles measured for each projection center 

and the previously identified tie points, the 3D coordinates of the points, and the exterior 

orientation parameters will be determined. Both the tie points extraction and the bundle 

adjustment can be done with specialised software, such as Inpho Match-AT (Trimble), 

UltraMap (Vexcel), Leica Xpro (Hexagon), Pix4D packages (Pix4D). 

3.5.5.  DIM and DSM generation 

     After the orientation of the nadir and/or oblique images, the dense point cloud (DIM) is 

generated. With nadir images acquired at a GSD (ground sample distance) of 10 cm, a point 

cloud with a density of 100 points/m2 can be generated. With oblique images, point clouds 

3 times denser can be obtained (Rupnik, Nex, & Remondino, 2014). 

3.5.6.  Orthophoto generation 

     The orthophoto is the basic product of the photogrammetric workflow and represents an 

orthorectified image, where the perspective effects because of the acquisition and the relief 

have been eliminated. DTM was traditionally used to generate the orthophotos, but the use 

of DSM has become a standard in mapping. The accuracy of the DSM-orthophoto, also 

called true-orthophoto, depends on the quality of the DSM. 
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A well-known method for generating true-orthophotos is the Z-Buffer method, developed to 

solve the hidden surface problem (Catmull, 1974). 

 

3.6. Aerial photogrammetry applications 

The last step of the photogrammetric workflow is the extraction of vector data, either by 

3D digitization in stereomodels or by 2D digitization on orthophotos, or by extracting the 

data by automatic/semi-automatic processes. These elements are subject to various 

photogrammetric applications, like urban planning, agriculture, emergencies responses. 

 

3.7. Photogrammetric data for the case study 

     The study area is the same one, as presented in subchapter 2.9. Besides the already 

described objectives of the LAKI II project, we can mention the aerial photogrammetric flight 

and the orthophoto generation. The images were acquired with the GSD of 20 cm (ANCPI, 

2016) and the aerial flight was performed with the Vexcel Ultracam Eagle Mark2 camera, 

mounted on an airplane. The aerial flight was performed in the East-West direction, in 

compliance with all meteorological requirements, when the sun angle was greater than 30°. 

All images were acquired in March 2017. The forward overlap was 65% and the side overlap 

was 35%. After running the photogrammetric workflow in UltraMap software, the RGB 

orthophoto was obtained with a spatial resolution of 20 cm and an absolute planimetric 

accuracy of ± 0.20m. 
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4.    Extracting data from LiDAR point clouds 
 

4.1. Introduction and purpose 

     In this chapter, I will detail the most popular methods of point cloud segmentation. I will 

continue with the description of the 3D features and the methods of supervised 

classification of point clouds based on Machine learning algorithms. The purpose of the 

review of all segmentation and classification methods is to create a framework for the case 

study, where I will detail all the steps and results of the proposed workflow for the 

classification of LiDAR point clouds. 

 

4.2. Point cloud segmentation 

     Point cloud segmentation is the process of classifying points into multiple homogeneous 

regions, based on similarity measurements of features (Nguyen & Le, 2013). The subchapter 

describes the segmentation methods presented by researchers in the field, among which  

(Sapkota, 2008), (Nguyen & Le, 2013), and (Xie, Tian, & Zhu, 2020).  

4.2.1.  Edge based methods 

     These methods comprise two stages: extracting the edges (boundaries between 

different regions) and grouping the points within these boundaries. The boundaries are 

identified based on changes in surface properties compared to an initially set threshold. One 

attribute used frequently is intensity. 

4.2.2.  Region based methods 

     The major advantage of this method is the robustness to noise points. A collection of 

region growing  algorithms is available in the C ++ code library for point cloud processing, 

named PCL (Rusu & Cousins, 2011).  

4.2.3.  Attributes based methods 

     Within these methods, the points are grouped based on the attributes. Thus, the first step 

is attributes computation, for example, surface texture measures (Filin S. , 2002). (Filin & 

Pfeifer, 2006) used the slope adaptive method to select the neighborhood based on the 

following point cloud attributes: point density, horizontal and vertical distribution, etc. 

4.2.4.  Model fitting methods 

     These methods use the idea that most artificial objects can be decomposed into primitive 

geometric shapes, such as planes, cylinders, spheres, and cones (Schnabel, Wahl, & Klein, 

2006). Robust parameter estimation methods are the 3D Hough transformation and the 

RANSAC method (RANdom SAmple Consensus).  
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     The RANSAC method (Fischler & Bolles, 1987) uses a minimum number of randomly 

chosen points to construct an initial solution, based on which it calculates the parameters 

of the initial model. This data set is grown with the points that fit in the original model. Thus, 

several primitive hypotheses are generated, and the choice of the optimal model is based 

on a voting scheme. 

     3D Hough transformation is based on the method of recognising 2D elements (lines and 

circles) in images (Hough, 1962). The transition from 2D space (images) to 3D space (point 

clouds) was made in several stages, and we can mention the research activity to detect 

arbitrary shapes (Ballard, 1991). 

4.2.5. Graph based methods 

     In the simplest approach, graph based segmentation methods consider the point cloud 

as a graph, in which each point is a node, and the connections between certain pairs of 

neighboring points represent the edges. One approach is to create a 3D graph based on KNN 

method, where the neighbouring points are more closely connected (Golovinskiy & 

Funkhouser, 2009). 

4.2.6. Hybrid methods 

     Hybrid methods use the combination of several segmentation methods and try to reduce 

the disadvantages of using one method by exploiting the advantages of another one. 

4.2.7.  Machine learning based methods 

      In the case of unsupervised learning methods that use machine learning algorithms, the 

problem consists of determining how data is organised. Some of the segmentation methods 

that are not based on training data are K-means (Zhu & Shahzad, 2014), Fuzzy clustering 

(Sampath & Shan, 2010), Mean-shift (Ukrainitz & Sarel, 2014), and hierarchical clustering: 

SLink (Sibson, 1973), P-Linkage (Lu, et al., 2016). 

 

4.3. Point cloud classification based on Machine learning algorithms 

     Three approaches to the problem of 

semantic segmentation (or classification) 

are known (Grilli, Menna, & Remondino, 

2017): supervised, unsupervised, and 

interactive. Figure 4.1 shows a workflow for 

the supervised classification of point clouds. 

 
Figure 4.1 Supervised point cloud classification 
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4.3.1.  3D point features 

4.3.1.1. PCA, eigenvalues, and eigenvectors 

     Principal Component Analysis (PCA) is a technique that performs the reduction of the 

data size by calculating the main components of the data - sets of eigenvalues and 

eigenvectors. The eigenvalues show the dimensions of a 3D ellipsoid along the three main 

axes and respect the inequality: 

𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ 0     (4.1) 

4.3.1.2. About point features  

     A feature is a specific representation of the data, which describes a property that allows 

the differentiation of certain elements within the scene (Weinmann M. , 2013). In the case 

of point clouds, the features can represent local or global geometric properties. 

4.3.1.2.1. 3D features of LiDAR points 

      3D features can be structured into geometric and local-abstract features. The 3D 

geometric features can be point height, the local density of the points, the verticality, the 

maximum difference of height between the points in the neighborhood, the standard 

deviation of the height in the neighborhood. The best known local 3D features are the 

abstract eigenfeatures (Weinmann M. , 2016), computed based on the eigenvalues, like 

linearity, planarity, scattering.     

• linearity          𝐿 =
𝜆1−𝜆2

𝜆1
      (4.2) 

• planarity  𝑃 =
𝜆2−𝜆3

𝜆1
      (4.3) 

 

4.3.1.2.2.  2D features of LiDAR points 

     The 2D features allow the identification of certain objects in the urban scene, which are 

almost perfectly vertical (building facades, pillars) and are complementary to the 3D ones. 

4.3.2.  Neighborhood selection 

     Defining the neighborhood of a 3D point, P, is the selection of points next to P, and this 

can be done using different strategies (Weinmann, et al., 2015), among which: 

a. spherical/cylindrical neighborhood with fixed radius;  

b. k nearest neighbors in 3D: comprising the nearest K 3D points around the P point, in 

terms of 3D or 2D metric distance. 

     Both approaches require prior knowledge of the analysed area and the definition of a 

constant value: either the radius of the sphere/cylinder or the number of neighbors. 
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4.3.3.  3D feature extraction 

     Most of the previously defined features are based on calculations within the defined 

neighborhood. For example, a point may have as attributes the following 16 computed 

features: 𝑃(𝐿, 𝑃, 𝑆, 𝐶, 𝑂, 𝐴, 𝐸, 𝛴, 𝐻, 𝐷3𝐷 , 𝑉, ∆𝐻3𝐷 , 𝜎𝐻, 𝐷2𝐷 , 𝛴2𝐷 , 𝑅2𝐷).    

4.3.4.  Feature selection 

     In selecting the optimal features to be used in the classification process, the Hughes 

phenomenon, also called the curse of dimensionality, must be considered. This 

phenomenon implies an increase in the classification’s accuracy, followed by reaching a 

maximum and a slight decrease. This trend is also related to the number of features used 

in the classification process. One approach is to use, for this selection, the information gain 

(Weinmann, Jutzi, & Mallet, 2014), which is evaluated independently for each feature and 

those that get higher values are relevant and must be used in the classification process. 

4.3.5.  Supervised classification 

     Supervised classification can be done by several methods, but they all have in common 

the two sets:  

 training  𝑋 = {(𝑥𝑖, 𝑙𝑖)} ,    𝑖 = 1 … . 𝑁𝑥,        𝑙𝑖 ∈ {1 … 𝑁𝑐}    (4.4) 

 testing 𝑌 = {𝑦𝑗} ,    𝑗 = 1 … . 𝑁𝑦                  (4.5) 

where, 

𝑥𝑖 = vector of features for point 𝑖; 

 𝑙𝑖  = corresponding class of point 𝑖; 

𝑦𝑗 = vector of features for point 𝑗 

and the purpose of assigning a class 𝑙𝑗  (𝑗 = 1 … . 𝑁𝑐) to each 𝑗 point in the testing data set. 

     Supervised classification methods can be differentiated into standard classifiers, which 

are based only on the extracted individual features, and contextual classifiers, which exploit 

both the extracted individual features and the relationships between the 3D points within the 

neighborhood. The most commonly used supervised classifiers are Nearest Neighbor, 

Decision Tree, Random Forest, AdaBoost, Support Vector Machines, and Maximum 

Likelihood (Waikato, 2021). Another approach is to classify point clouds using deep neural 

networks. 

       Nearest Neighbour classifier (NN) uses instance-based learning. The rule used is to 

compare the features of the new points with those of the points in the training set, for 

example, by using the Euclidean distances. 

     Decision Tree classifier (DT) uses rule-based learning. Based on the point features, a 

series of decisions are selected. Depending on the "answers" received to these "questions" 

a point is assigned to a certain class. 
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     Random Forest classifier (RF) uses ensemble-based learning (Breiman L. , 2001). RF is 

represented by a set of binary decision trees, which based on the "answers" (true or false) 

at the level of each branch, partition the data set. The "root" node covers the entire predictor 

space, and the nodes that are no longer partitioned are leaves and are the final decisions of 

the classification. 

      AdaBoost classifier, within each iteration, creates a distribution of the training subset and 

applies a hypothesis with a low error in terms of the actual class. After running all iterations, 

the individual hypotheses must be combined into a single prediction rule (Freund & Schapire, 

1997). 

     Support Vector Machines classifier (SVM) uses the algorithm of margins maximisation. 

SVM for multi-class classification can be regarded as a one versus all classifier (Morariu, 

2007) or as a  one versus one classifier (Chang & Lin, 2011).  

     Naive Bayesian is a probabilistic classifier that extracts the most probable class for each 

point based on Bayes' theorem and the assumption that all features are conditionally 

independent (John & Langley, 1995). To eliminate the problem of correlated features, the 

Maximum Likelihood classifier (ML) was developed, which is based on the hypothesis that 

classes can be represented by different Gaussian distributions. 

4.3.6. Accuracy assessment 

     After classifying the testing data set, we can proceed to the last stage of the classification 

process, the assessment of the classification quality. This evaluation is performed using 

quality indicators (overall accuracy, classes recall, classes precision, etc.), based on the 

values extracted from the confusion matrix (Weinmann M. , 2019). 

 

4.4. Case study - point cloud classification 

4.4.1.  Preparing the point cloud 

    Preparing the point cloud consists of selecting the training, testing, and validation areas, 

filtering the noise from the point cloud and RGB point clouds encoding. The division of these 

points into the three areas listed above and the 

percentage of points for each set are detailed in Figure 

4.2. 

 

 
Figure 4.2 Dividing the point cloud 

Blue - training data set; Orange - testing data set; Grey - area to 

classify 
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     Noise filtering was done, using the Statistical Outlier Removal instrument, in 

CloudCompare. This filter eliminated 31444 points (2.8%). The total number of points used 

in this study case is 978337 (figure 4.3). 

 

 

 

 

 

 
Figure 4.3 Point cloud 

a) with noise; b) without noise 

4.4.2.  Dynamic neighborhood selection 

     In the literature, for the points neighborhood, fixed values are used for all the points 

(radius or number of close neighbors). An approach where the K parameter is flexible and 

can vary within the 3D point cloud is preferable. But, how can we select the neighborhood 

differently, dynamically? The answer would be to focus on a generic selection of individual 

neighborhoods described by an optimised scale parameter for each 3D point, thus 

completely avoiding the use of prior knowledge of the scene and/or of the data. In this 

sense, I used the region growing algorithm, and selected, dynamically, the nearest K 

neighbors of each point, by partitioning the point cloud into homogeneous and disjoint 

regions, starting from a seed point. Then, the growth of the region continued, based on 

similarity measurements. 

     Thus, I developed a code in the C ++ language, based on the PCL code library. Based on 

several tests with various sets of segmentation parameters, I identified the optimal 

parameters (table 4.1). I carried this activity during the secondment at FBK (Bruno Kessler 

Foundation) research center, in Trento, Italy, within the VOLTA Project (GA nr. 734687 —

VOLTA —H2020-MSCA-RISE-2016). 

K - KDTree 50 

Neighbours for Normals Computation 15 

MinClusterSize 20 

MaxClusterSize 100 

NumberOfNeighbours 15 

CurvatureThreshold 0.3 

SmoothnessThreshold 12.5/180*Π 

Table 4.1 Segmentation parameters  
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4.4.3.  Feature extraction 

     The computation of abstract eigenfeatures was implemented in a C++ code. I included 

also the code lines developed for the dynamic selection of K, after running and testing them 

separately. Besides the abstract features used in the literature, I have defined several new 

features. Through successive tests, I found that only the N2 feature is relevant in the 

classification process. 

𝑁 2 =
𝜆1+𝜆2+𝜆3

𝜆1
          (4.6) 

     In figure 4.4, eigenfeatures such as linearity (a), planarity (b), surface variation (c) and N2 

(d) can be observed on the training data set. 

 
Figure 4.1 Some eigenfeatures 

4.4.4.  Classification and accuracy assessment 

4.4.4.1. Weka  

     Weka is a software developed by the University of Waikato, New Zealand and contains a 

collection of Machine learning algorithms, written in Java language, for solving problems of 

Data Mining (Waikato, 2021).  

4.4.4.2. Training and testing data sets 

      The point classes used for testing different classifiers are: 

 0 - ground; 

 1 - vegetation; 

 2 - roof; 

 3 - others (poles, power lines, cars, building facades, fences, etc.). 

     Based on the abstract eigenfeatures, but also on the attributes of the 3D points (including 

RGB values), I performed, in CloudCompare, the manual classification of the points from the 

training and testing data sets. First, I extracted the ground points automatically, using the 

Cloth Simulation Filter tool (Zhang, et al., 2016). From the rest of the non-ground points, 
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through a series of successive cuts and unions, I obtained the classified data sets. The 

manual classification was time consuming, the entire process took me approx. 40 hours. 

 
Figure 4.5 Training and testing data set  

      The features for all the 3D points are: translated 3D coordinates, RGB values, normal 

components in all three directions, curvature value, eigenvalues, abstract eigenfeatures, 

default point cloud features, unique ID, and class value. 

4.4.4.3. Machine learning classifiers  

      In Machine learning the terms instance (3D point) and attribute (feature) are used. I 

trained 7 classifiers on 266987 instances, using the following attributes: normals (3), 

curvature, eigenvalues (3), abstract eigenfeatures (8), default point features (translated 

height, number of return and intensity), and class. 

4.4.4.4. Analysis of the results for the used classifiers  

     From the analysis of the time required to create and test the model for the 7 classifiers 

run in the Weka software (figure 4.6), I conclude that the IBk (NN) classifier requires the 

longest time. The classifier that needs the least time is Naive Bayes. The J48 classifier 

proved to be 6 times faster than the Random Forest, and the Random Forest and SMO 

classifiers had similar time requirements. 

 
Figure 4.6 Time analysis per classifier in Weka (blue - creating the model; brown - testing the model) 

     In terms of classification quality (Figure 4.7), defined by the OA value (overall accuracy), 

the SMO classifier, followed by Random Forest and Naive Bayes, occupy the first three 

places, with values of approximately 93%. The AdaBoost classifier offers the lowest value 

of OA, only 76%. 

NAIVE BAYES IBk Ada Boost PART J48 Random forest SMO

2 1 18 666 62 389 365
7

6285

4 8 2 14 4

TIME ANALYSIS PER CLASSIFIER
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Figure 4.7 OA for the tested classifiers 

     From the analysis of the quality indicators for the roof  class (figure 4.8), I conclude that 

the Random Forest and SMO classifiers offer the best results; the precision is about 98%, 

the recall is around 90%, and the F1 score is about 93%. 

 
Figure 4.8 Quality indicators (blue - precision; brown - recall; red - F1 score) 

     By running the saved model of the Random Forest classifier, I obtained the results, 

displayed in figure 4.9, within 6 minutes. 

 

 

 

 

 

 

 
Figure 4.9 Classification results using the Random Forest classifier 
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4.4.4.5. Point cloud classification workflow  

     In figure 4.10 the workflow for classifying the point cloud using Machine Learning 

algorithms is schematically described.  

 

 
Figure 4.10 Classification workflow using Machine Learning classifiers 
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5.   Extracting data from orthorectified images 
 

5.1. Introduction and purpose 

     In this chapter, I will present the most popular methods of semantic segmentation of 

images. Then, I will briefly present the methods of supervised semantic segmentation of 

images based on Machine learning techniques and describe the most well-known artificial 

neural network architectures for image classification, from AlexNet to DenseNet and for 

semantic segmentation, such as FCN, SegNet, U-Net. In the case study, I will detail all the 

steps in the workflow for semantic segmentation, both with Machine Learning algorithms 

and with deep neural networks. I will perform the analysis on a subset of the orthophoto for 

the city of Arad, in ArcGIS Pro software. 

 

5.2. Introductory notions 

     Artificial intelligence (AI) is the simulation of human intelligence by machines, which are 

programmed to think like a human. The term originated in 1956 is attributed to J. McCarthy 

from MIT. Machine learning is an application of AI, which contains algorithms that analyse 

data, learn about that data and apply what they have learned to make optimal decisions 

(Grossfeld, 2021). Deep learning is a sub-domain of machine learning, in which applications 

can learn and make their own decisions based on an artificial neural network (ANN). 

 

5.3. Extracting data from images using Machine learning algorithms 

     Known Machine Learning algorithms, like SVM, Random Forest, K-means clustering, 

provide excellent results in the semantic segmentation of images. 

 

5.4. Extracting data from images using ANN 

5.4.1.  Brief history of the development of neural networks 

     The idea of neural networks started from the research of W. McCullough and W. Pitts, 

from the University of Chicago, in 1943. Their work "A Logical Calculus of the Immanent 

Ideas in Nervous Activity" was the basis of the theory according to whom the activation 

function of a neuron is the basic unit of brain activity (McCullough & Pitts, 1943). The next 

step was the development of the Perceptron algorithm in 1958, by F. Rosenblatt, with the 

aim of supervised learning of binary classifiers. This field has undergone an amazing 

evolution, and the development of hardware and software components will certainly dictate 

the future of artificial neural networks. 
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5.4.2.  ANN definitions 

     An artificial neural network (RNA) is “a distributed, massively parallel processor, 

composed of simple processing units with the natural ability to store new knowledge based 

on previous experience and make it available for later use.” (Haykin, 2008). 

5.4.3.  Natural neuron versus artificial neuron 

5.4.3.1. Natural neuron 

     The human neuron is the morpho-functional unit of the nervous system and consists of 

the cell body and extensions (dendrites and axons). Figure 5.1 highlights the path taken by 

the stimulus. 

 

 

 

 

 

 
Figure 5.1 A network of human neurons 

 (Phillips, 2015) 

5.4.3.2. Artificial neuron 

     An artificial neural network is a simplified model of the human neural network. Each 

artificial neuron comprises the following basic components (Figure 5.2): 

o the set of connections or synapses between units, with the corresponding weights; 

o the summator, which gathers the input signals, weighted with the synaptic power of 

the respective neuron; 

o the activation function, which limits the amplitude of the output signal to a certain 

finite value; 

o the bias, which is applied from outside the network and aims to increase or decrease 

the net input of the activation function (depending on the positive or negative value).     

 𝑢𝑘 = ∑ 𝑤𝑘𝑗 ∙ 𝑥𝑗  𝑗                   (5.1) 

𝑦𝑘 = 𝜑(𝑢𝑘 + 𝑏𝑘) = 𝜑(𝑣𝑘)         (5.2) 

where, 

𝑤𝑘𝑗 = the weights of neuron k; 

𝑥𝑗    = inputs (j=1...m); 

𝑢𝑘   = the output obtained by summing the weighted input signals; 

𝑏𝑘   = the bias of neuron k; 
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𝑣𝑘   = the biased 𝑢𝑘 output. 

 
Figure 5.2 The model of neuron k 

 (After (Haykin, 2008)) 

5.4.4.  ANN architectures 

A. Single-layer feed-forward network - causes the input layer to project directly onto the 

neuron output layer. 

B. Multi-layer feed-forward network - contains one or more hidden layers, comprising hidden 

units. 

C. Feed-back network - represents the most complex ANN architecture, which has at least 

one feedback loop. 

5.4.5. Deep neural network 

     A deep neural network (DNN) is a complex neural network with multiple layers interposed 

between the input and output layers (figure 5.3). The activation function used is the non-

linear rectified linear unit (ReLU). DNNs are used for text recognition (DeepText), facial 

recognition (DeepFace), etc. 

 

 

 

 

 

Figure 5.3 DNN with 3 hidden layers 



Contributions to the automation of geospatial data extraction for 3D modelling                        Bină Iuliana Maria 

 

33 
 

     A convolutional neural network (CNN) is a deep neural network, composed of 

convolutional layers, the aggregation layer, and one or more fully connected layers of the 

multilayer Perceptron type (Vrejoiu, 2019). 

5.4.6.  Learning process with ANN 

     Learning techniques can be classified into the following categories: supervised (figure 

5.4), unsupervised, semi-supervised, or reinforced. 

 
Figure 5.4 Supervised learning algorithms 

 (After (Yadav, Yadav, & Kumar, 2015)) 

5.4.7.  ANN applications 

     The basic applications of ANN, in working with digital images, are semantic 

segmentation, classification, object detection, and instance segmentation (Agarwal, 2018). 

5.4.8.  Basic CNN architectures 

5.4.8.1. AlexNet 

     AlexNet comprises five convolutional layers, three of them followed by max-pooling 

layers, and three fully connected layers. This architecture used about 60 million parameters 

and 650000 neurons. To make the learning process faster, unsaturated neurons and a highly 

efficient GPU implementation of the convolution operation were used (Krizhevsky, 

Sutskever, & Hinton, 2012).          

5.4.8.2. VGGNet 

     The VGGNet neural network is made of 16 or 19 layers, the first is convolutional and the 

last 3 layers are fully connected. VGGNet is a block architecture, where each block 

comprises a succession of convolutional layers, followed by a max-pooling layer. 

5.4.8.3. NiN Net 

     Based on AlexNet and VGGNet architectures, the NiN (Network in network) architecture 

was developed (Lin, Chen, & Yan, 2014). The fundamental differences between NiN and the 

previous architectures are the use of the Mlpconv layer (equivalent to a convolutional layer 

with a 1×1 kernel filter) instead of the linear convolutional layer and the global average-

pooling layer instead of the fully connected layers. 
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5.4.8.4. GoogLeNet 

     Compared to the AlexNet architecture, GoogLeNet uses 12 times fewer parameters and 

provides higher accuracy results (Szegedy, et al., 2015). This architecture is based on the 

Inception blocks. 

5.4.8.5. ResNet 

     The concept of ResNet (Residual Networks) architecture is based on the use of blocks 

that redirect input data and add them to the concept already learned from the previous layer 

(Residual Net, 2020).  

     Five ResNet architectures were created, starting with 18 layers, continuing with 34, 50, 

101, and ending with 152 layers. The residual neural network with 152 layers was, in 2015, 

the deepest network presented at the ImageNet competition. 

5.4.8.6. DenseNet 

     DenseNet is an improved version of ResNet, proposed in 2016 (Huang, Liu, Van Der 

Maaten, & Weinberger, 2017). The hyper-parameter used is the growth rate (k). Each layer 

reads the state from its preceding layer and writes it to the following layer. The growth rate 

adjusts the number of new information with which each layer contributes to the overall state. 

5.4.9. Architectures used for semantic segmentation of images  

5.4.9.1. FCN 

     FCN (Fully convolutional networks) are neural networks composed of convolutional 

layers, but which do not have fully connected final layers (Long, Shelhamer, & Darrell, 2015). 

The fundamental difference from CNN is that the decision layers at the end of the network 

are filters. 

5.4.9.2. SegNet 

      SegNet is a deep CNN network comprising a network of encoders, a network of 

corresponding decoders, and the last layer of pixel-level classification. 

5.4.9.3. U-net 

     The U-net architecture won the ISBI competition (International Symposium on Biomedical 

Imaging), in 2015. This architecture, based on FCN, was developed for the medical domain 

(Ronneberger, Fischer, & Brox, 2015). 

5.4.9.4. DeconvNet 

     DeconvNet (Noh, Hong, & Han, 2015) uses convolution layers (which extract features 

from images) and deconvolution layers (generate probability maps). In the first step, the 

convolution network is applied and the layers, according to the VGG16 architecture, are 

used. In the deconvolution network, a series of unpooling layers and deconvolution ones are 

used. 
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5.5. Accuracy assessment of image classification and segmentation  
     The Jaccard index is the quantification of the percentage of overlap between the 

reference mask and the result of classification/segmentation. I have described the other 

quality indicators in subchapter 4.3.6. 

 

5.6. ANN frameworks 

     The most popular frameworks with ANN are TensorFlow, PyTorch, Keras, DL4J, Caffe, 

Microsoft Cognitive Toolkit. In these frameworks, one can follow all the workflow steps for 

image classification or segmentation. 

 

5.7. Case study - image semantic segmentation 

     I conducted the case study in ArcGIS Pro software, by testing the semantic segmentation 

capabilities of images through both Machine learning algorithms (SVM, Random Trees, and 

Maximum Likelihood) and deep artificial neural networks. I performed the tests on a subset 

of the orthophoto for the city of Arad, with the spatial resolution of 20 cm, and the spectral 

resolution of 32 bits. 

5.7.1.  Image classification using Machine learning algorithms 

5.7.1.1. Supervised pixel-based classification 

     Based on visual image analysis and the need to extract the buildings class, I established 

the following classification scheme: buildings, vegetation, roads, and bare-earth. Using the 

Training Samples Manager tool, I collected 175 learning samples (circles with variable 

radius), so that their number allows a good classification, and the pixels related to the 

samples represent clearly and unequivocally the respective class. Initially, I ran the 

supervised learning process of the models without using auxiliary data, only based on the 

following attributes: colour, average digital number, standard deviation, number of pixels, 

and rectangularity. The supervised classifiers available in ArcGIS Pro are Maximum 

Likelihood (probabilistic classifier), Random Trees (ensemble classifier), and Support Vector 

Machine. 

 
Figure 5.1 Supervised pixel-based classification in ArcGIS Pro 



Contributions to the automation of geospatial data extraction for 3D modelling                        Bină Iuliana Maria 

 

36 
 

         I used the following steps to compute the quality indicators of the classification: 

 digitise the test samples and save the result in vector format; 

 transform the vector file into a raster file; 

 based on the raster, the desired number of test points is created (eg 5000), by 

applying a sampling strategy; 

 the resulting feature class must be updated with the value corresponding to each 

point extracted from the classified raster; 

 based on the test points and the classification result, the confusion matrix and quality 

indicators are computed. 

     Graph 5.6 details the quality indicators of the classification for the buildings class 

obtained for the three algorithms used. 

Figure 5.6  Quality indicators – buildings class                         Figure 5.7 Classified raster using SVM 

(blue - precision; brown - recall; red - F1 score)                                

     I included the DSM raster as auxiliary data in the classification process. For this analysis, 

I applied only the SVM classifier (resulting SVM-V2 approach). This approach has led to an 

increase in the accuracy of the classification. The values of the quality indicators are shown 

in figure 5.8. 

 

 

 

 

 
Figure 5.8 Quality indicators for SVM-V2 

     Comparing the two approaches used for image classification with the SVM algorithm: 

with or without the information from the DSM, I observed an increase in the quality of the 

classification by at least 10% for each indicator analysed (figure 5.9). 
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Figure 5.10 Quality indicators for image classification 

5.7.1.2. Supervised object-based classification 

      Compared to the pixel-based classification, this approach differs by including in the 

workflow the following steps: image segmentation, based on the Mean Shift algorithm, and 

the selection of samples, based on the resulting segments. 

5.7.2.  Imagine classification based on DNN  

     After preparing the image, I created the training samples, digitizing the outline of 138 

roofs. These polygon samples, were transformed into a typical ANN format, using the Export 

Training Data tool. The result was composed of 52 images, each image having 3 spectral 

bands and the size of 256x256 pixels. ANN extracted 556 features, with an average of 10.69 

features/image. The next step was to train the model. Based on the learning data set, ArcGIS 

Pro created the network model, using the U-Net network type with the ResNet34 structural 

model. I applied the model on the test data set and got, for the only class created - 

BUILDINGS, the precision of 90.4%, the recall of 62.7%, and the F1 score of 73.8%. The last 

step of the workflow is the pixel-based classification of the entire image.  

 
 

 

 

 

 

      

Figure 5.2 Semantic segmentation result               Figure 5.11 Quality indicators using ResNet34 and    

  ResNet50 

     I resumed the ANN training using the U-Net network type with the ResNet50 structural 

model. The time required to create the model was 15 hours. I got, for the BUILDINGS class, 

the precision of 87.9%, the recall of 67.8% and the F1 score of 76.2%. I conclude that the 

time required to create the model using ResNet50 is too long, and the quality indicators did 

not experience a significant increase. 
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6.  3D Building Modelling based on point clouds 

 

6.1. Introduction and purpose 

     Local and central administrations need a virtual representation of their cities. The 

elements in the 3D city models that I will emphasise in this chapter are represented by 

buildings. DSM is usually used for 3D building models. Unfortunately, these models do not 

contain semantic or geometric information and do not allow the differentiation between 

elements and the realisation of analyses, simulations, etc. 3D models in which each building 

is individually represented can be reconstructed from photogrammetric images, point 

clouds (either LiDAR or photogrammetric derived), ground footprints or a combination of 

these types of data. 

 

6.2. 3D building models generation 

      3D city models comprise 3D models of buildings, vegetation, street elements, urban 

infrastructure (eg hydrographic constructions, high voltage lines), and urban objects (eg 

traffic signs, monuments, statues, fountains). DSM at higher resolutions include all these 

elements, but do not distinguish between individual objects. Therefore, generating 3D 

models from point clouds is the preferred option, as it preserves the accuracy and facilitates 

analysis. 

6.2.1.  Model-based generation of 3D building models 

     In this situation, a building is considered to be composed of simple primitives. These 

primitives are stored in a library of pre-defined models. With complex shaped buildings, the 

solution for a reconstruction close to reality is to decompose the building into multiple 

shapes and match the models to these shapes. 

6.2.2.  Data-based generation of 3D building models 

     Using this approach, no assumptions are made about the shape of the buildings, thus 

eliminating the problems encountered with model-based methods. Data-based methods use 

point cloud segmentation, followed by individual segment assembly and model 

reconstruction. The methods used for segmentation have been detailed in subchapter 4.2. 

and include algorithms such as region growing, RANSAC.      
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      (Dorninger & Pfeifer, 2008) proposed the use of the 𝜶 Shape algorithm (Edelsbrunner, 

Kirkpatrick, & Seidel, 1983) for generating the buildings footprints . An 𝜶 Shape 2D is a 

polygonal boundary of a set of points (figure 6.1).  

 

 

Figure 6.1 𝛼 Shape 2D 

 (Ohbuchi & Takei , 2003) 

 

6.2.3.  Point cloud processing softwares  

     There are various point cloud processing softwares, which can be divided into: 

 provided by LiDAR system manufacturers, eg RiPROCESS developed by Riegl (RIEGL, 

RiProcess_Datasheet, 2021); 

 academic or open-source: LAS tools (Hug, Krzystek, & Fuchs, 2004), CloudCompare 

(Girardeau-Montaut, 2019); 

 commercial software for performing the entire workflow, eg TerraScan (Terrasolid, 

2021). 

     OPALS (Orientation and Processing of Airborne Laser Scanning) is also part of the group 

of academic software. This modular program system was developed within the Research 

Groups Photogrammetry and Remote Sensing, Technical University of Vienna (OPALS, 

2019a). The modules available in OPALS allow both LiDAR data processing, raw POS (direct 

georeferencing, strip adjustment, calibration), as well as classification of point clouds, 

geomorphological modelling and generation of DTM and DSM (Pfeifer, Mandlburger, 

Otepka, & Karel, 2014). 

 

6.3. CityGML level of detail 

     The geometric and semantic detailing of a 3D model is known as the level of detail (LoD). 

Standardisation defined by the Open Geospatial Consortium (OGC) is known as the CityGML 

standard. CityGML is an open data model, used for storing and exchanging virtual 3D city 

models, based on the ISO 19100 international standards. The OGC adopted the standard 

CityGML, version 2.0, in March 2012 and it is still in use. Version 3.0 is in progress since 

2013 and has not been released yet. 

6.3.1.  CityGML 2.0 

     In the CityGML 2.0 are defined 5 standard classes with different LoDs (figure 6.2). Higher 

levels have a higher degree of detail, are more precise and have a structure of greater 

complexity. 
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Figure 6.2 LoDs in CityGML 2.0 

 (Biljecki, Ledoux, & Stoter, 2016) 

     In the CityGML standard, objects present semantic and geometric definition models. The 

semantic model is based on the ISO 19109 and the GML3 standard and contains the 

definition of classes. Using semantics differentiates typical 3D models from standardised 

CityGML models. At the semantic level, features represent real-world objects, such as 

buildings, walls, windows. The geometric model is based on the ISO 19107 standard and 

represents the spatial properties of the geometry of 3D objects. If a 3D model has both types 

of hierarchies, then these two must be coherent and in correspondence. 

6.3.2.  CityGML 3.0 

      CityGML 3.0 will bring major improvements to previous versions, by splitting the building 

models into floors, removing LoD4 and including interior, and exterior specifications for all 

levels of detail. 

 

6.4. Applications of 3D building models  

     3D city models, through their basic component - 3D building models, cover a wide range 

of applications. The most known applications are estimating the potential of solar energy, 

estimating the energy required for individual buildings, creating the 3D cadastre, visibility 

analysis, prompt response to emergencies, and studying the impact of floods, earthquakes.     

 

6.5. The current international status in 3D building modelling  

     The website https://3dbag.nl/ contains sets of 3D building models for all the cities in the 

Netherlands. The buildings are available at various levels of detail and are regularly updated. 

     The 3D city models for Singapore were launched as open data in 2019. The buildings 

footprints available in OpenStreetMap were extruded based on information on the number 

of floors provided by the HDB (Housing and Development Council). 

     Switzerland is another country that has moved to 3D topographic maps, with total 

coverage of the territory with 3D objects. 
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6.6. Softwares for the generation of 3D building models  

6.6.1.  BuildingReconstruction 

     The software BuildingReconstruction, developed by virtualcitySYSTEMS (2018) 

generates digital building models with LoD1 or LoD2. For each 2D building polygon, a 

separate 3D model is produced. The building volume corresponds to the 2D geometry of the 

footprint and the height of the building extracted from the DSM. 

6.6.2. Esri CityEngine 

     The software CityEngine, developed by Esri, uses a 3D generation procedure based on a 

series of rule files, written in a unique programming language called CGA (Computer 

Generated Architecture). These rules underlie the extrusion of polygons and the generation 

of 3D building models (Figure 6.3). Textures for buildings can be added to the rules file. 

 
Figure 6.3 3D building models using CityEngine 

6.6.3.  3dfier  

     3dfier  is an open-source tool for creating 3D models, developed at Delft University of 

Technology, Netherlands. 3D building models are generated based on the 2D polygons and 

the point cloud related to the area (TUDelft, 2021). The buildings footprints are extruded at 

the height given by the 3D point cloud (figure 6.4). 

 
Figure 6.4 3D building models using 3dfier  (TUDelft, 2021) 

6.6.4. PolyFit 

     The PolyFit software performs surface reconstruction based on assumption and 

selection strategies, generating 3D building models with as few planar surfaces as possible. 
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6.7. Geometric and semantic errors in CityGML data sets 

6.7.1.  Geometric and semantic types of errors 

     CityGML uses geometric primitives to represent objects according to the ISO 19107 

standard: a 0D primitive is a point, a 1D primitive is a linear ring, a 2D primitive is a polygon, 

and a 3D primitive is a solid (Biljecki F. , et al., 2016). Geometric primitives with the same 

dimensionality can be combined to form aggregates or composites. They can be structured 

in four classes: multi-surface, composite surface, shell, composite solid. 

     Each surface can store attributes, and this is recommended to facilitate further analysis. 

To highlight and correct semantic errors, classes can be symbolised differently and thus 

errors can be easily noticed on a visual inspection. 

6.7.2.  Topology validation software 

      The val3dity open-source software allows 3D primitive validation under the international 

standard, ISO 19107 - Geographic information - Spatial scheme, using the command line. 

GML, CityJSON, CityGML, OBJ files can be used as input data. The validation process is 

hierarchical, so that the low-dimension primitives are validated first. 

 

6.8. 3D GIS and BIM 

     Regarding the life cycle of a building, the first step should be to generate a BIM (Building 

Information Models). The IFC (Industry Foundation Classes) standard represents all the 

components of a building (eg IfcDoorType - door type). Therefore, constructions built based 

on a BIM no longer need a 3D model based on the elements measured in the field, but only 

to perform the semantic mapping and geometric-semantic conversion from the IFC 

standard to the GML. Some softwares allow this conversion, like Building Information 

Modelserver (BIMserver, 2021),  IFCExplorer (SECOM, 2020), FME (SAFE, 2021).  

 

6.9. Case study – 3D building models generation 

     The first step in generating 3D building models is to extract buildings footprints from 

point clouds in OPALS software. Subsequently, I applied two approaches to determine the 

building’s heights, directly from the point cloud, or based on information extracted from the 

nDSM. 

6.9.1.  Extraction of buildings footprints from LiDAR point clouds    

6.9.1.1. Generation of buildings footprints from segmented point clouds 

     For the case study, I used only the class of roof  from the classified point cloud. The first 

step, in OPALS, was to transform the point cloud from las to odm format. 
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6.9.1.1.1. Conditional clustering 

Based on the examples available on the OPALS website, https://opals.geo.tuwien.ac.at/, 

I created a Python code and applied two different grouping criteria for segmentation based 

on conditional clustering.  

     Conditional clustering - v1 

      The homogeneity criterion is given by the z-coordinate differences of the neighboring 

points. If this difference is less than 10cm, then the points belong to the same segment. 

     Following the segmentation process, I got 44 segments. For each segment, the software 

displays the plan parameters and the sigma0 value. By applying the alpha shape algorithm, 

57 polygons resulted. Some polygons contain several buildings, but most of them have been 

extracted correctly. 

       Conditional clustering - v2 

     Here, the angles between the normal vectors gives the homogeneity criterion at the 

neighboring points. For the angle, I used the value of 10°. Following the segmentation 

process, 64 segments resulted. By applying the alpha shape algorithm, 71 polygons 

resulted. 

6.9.1.1.2. Plane extraction 

Based on the examples available on the OPALS website, https://opals.geo.tuwien.ac.at/, 

I created a Python code to extract de buildings footprints. After performing several tests, I 

used the following parameters for segmentation: 

 searchRadius = 1; 

 minSegSize = 50; 

 maxDist = 0.25; 

 maxSigma = 0.15; 

 seedCalculator = "NormalSigma0 < 0.1 ? NormalSigma0 : invalid"; 

 alphaRadius = 1. 

     After performing the segmentation and the alpha shape algorithm, I got 210 segments 

and 222 polygons. From the results obtained, I can state that the segmentation that groups 

points belonging to a single roof is performed by the method of plane extraction. The 

disadvantage of this method is the lack of polygons on the buildings ridges. Figure 6.5 

shows the comparative analysis of the tested segmentation methods. Regardless of the 

method chosen, GIS operations for polygons regularisation must be applied. 
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Figure 6.5 Building outlines based on segmentation 

 a) plane extraction; b) conditional clustering – v2 

     Following the analysis of the results, I concluded that the method of plane extraction 

provides the best results and will be used in the workflow. 

6.9.1.2. Post-processing of segmented polygons 

     Buildings footprints generated by segmentation using plane extraction method require 

simplification and regularisation operations in a GIS environment, in order to use them as a 

basis for 3D building models. The proposed workflow for regularising polygons was applied 

in ArcGIS Pro. I detailed the instruments used in Figure 6.6. 

 
             Figure 6.6 Regularization process applied                       Figure 6.7 Buildings footprints   

               a) segmentation results ; b) postprocessing results  

     After GIS processing, I performed the filtering of buildings with areas smaller than 20m2. 

Finally, for the data set used, only 53 polygons remained, representing the buildings 

footprints. The data set must be checked and corrected for topological errors such as 

overlaps or gaps. I ran the topology and identified 24 errors, which I corrected. 
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     From the analysis of the data set, I can conclude that over 90% of the buildings have 

correct footprints. The difference of 10% of non-compliant footprints is due to errors in the 

classification or/and in the segmentation of the point cloud. 

6.9.2.  Generating 3D building models in 3dfier 

    To run the generation in 3dfier software, it is necessary to prepare the working 

environment (figure 6.8). As described in the previous subchapter, the buildings footprints 

were regularised and corrected for all topological errors before being introduced into the 3D 

model generation software. The point cloud used consists only of the ground  and roof  point 

classes. I updated the model configuration file with the corresponding information, based 

on the data set. The software can be run from the Command Prompt. After navigating to the 

location where 3dfier  is saved, I executed the command ..\ 3dfier.exe testarea_config.yml -

-OBJ output \ ARAD.obj. 

 

 

 

 

 

 

 

                                 Figure 6.8 Input data for 3dfier 

     ARAD.obj consists of 1030 vertices and 1976 faces. For viewing, the 3D building models 

with LoD1, I uploaded the file in MeshLab software (figure 6.9).  

 

 

 

 

 

 
Figure 6.9 3D building models generated in 3dfier   

6.9.3.  Generating 3D building models in CityEngine 

     This approach requires information about the height of each building. I chose to use these 

heights in the form of attributes of the buildings footprints . Thus, based on the previously 

generated buildings footprints, the height extracted from nDSM, and the CGA rules, 3D 

building models with LoD1 or LoD2 were generated. 
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6.9.3.1. Buildings height extraction using centroid points  

     I generated, in Global Mapper, on the area of interest, the following models: DTM - from 

ground  points, DSM - from ground and roof  points, and nDSM - based on the difference 

between DSM and DTM. I generated these models with the spatial resolution of 1m, using 

the bilinear interpolation method. 

     I performed the transfer of the values from nDSM to the polygons representing the 

buildings footprints in ArcGIS Pro, following the steps below: 

 generating centroid points of buildings (figure 6.10); 

 extracting the pixel height value, corresponding to the centroid point, from nDSM; 

 creating the Height field (type Numeric - Double); 

 creating a spatial join between the centroid points and the buildings footprints ; 

 attribute transfer and population of the Height field. 

 
 

Figure 6.10 Centroid points and statistical data 

     From figure 6.10, we can observe that the average height of the buildings is 4.6 meters 

and that most buildings have heights below 7 meters. 

     In CityEngine, I defined the CGA rules: the type of roof (gable roof), the inclination angle 

(22.5°), and the texture used for building facades. Analysing the heights of the buildings in 

the models and in the classified point clouds, I observed big differences for some buildings 

whose roofs are very steep (figure 6.11). 

 
Figure 6.11 Differences between the 3D models and the point clouds 
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     These errors are because by the way I extracted the height of the buildings from the 

nDSM, namely using the buildings centroids, which in most cases, are on the ridge of the 

roofs, at the highest points. 

6.9.3.2. Buildings height extraction using characteristic points  

     To avoid the above problem, I applied another building height extraction workflow: 

 applying a negative buffer (-1m) to the building polygons; 

 transforming the contour of the building polygons into a line type; 

 generating points on each contour of the buildings (figure 6.12); 

 extracting the pixel height value, corresponding to the characteristic point, from 

nDSM; 

 creating the Height field (type Numeric - Double); 

 creating a spatial join between the characteristic points and the buildings 

footprints ; 

 attribute transfer and population of the Height field. 

      By applying this new workflow, I moved from the centroid points of the buildings to the 

characteristic points on the roofs, much closer to the lower edges of the roof.      

 

 

 

 
 

 

 

 

 

Figure 6.12 Characteristic points and statistical data 

     This alternative approach leads to the generation of realistic 3D models with improved 

building heights (figure 6.13). Figure 6.12 shows that the tallest building is 7.6 meters and 

that the average height of the buildings is 3.9 meters, compared to 4.6 meters in the previous 

approach. 
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Figure 6.13 3D optimised buiding model - details 

6.9.4.  Accuracy assessment of the 3D buiding models 

     The 3D building models resulting in 3dfier  have the level of detail LoD1, and the ones 

generated in CityEngine  have the level of detail LoD2. Therefore, for the analysis of the 

quality of the generated models, I used the 3D models generated by using the optimised 

heights determined from the characteristic points of the buildings in CityEngine. 

     To evaluate the quality of the 3D models, I analysed the following indicators: 

A. planimetric root mean square error 

     I chosed 17 points randomly distributed, located both at the base of the building and in 

the upper part of it. I compared the planimetric coordinates of these points with the 

corresponding (closest) points in the point cloud. The resulting planimetric RMSE is 0.38m. 

B. altimetric root mean square error 

     I chosed 22 points randomly distributed, located in the upper part of the roofs. I compared 

the altimetric coordinates of these points (building height) with the pixel values in the nDSM. 

It should be noted that all roofs were generated with the same angle of inclination. 

Therefore, block roofs or roofs with slopes in other directions can generate errors in the 

RMSE computation. From the data analysis, I observed big differences for 6 points that were 

further analysed. 

  

Figure 6.14 Visual and statistical analysis  

     The situations presented in figure 6.14 show that the large differences identified are due 

to the block-type roofs (No.crt.7) and the roofs with slopes in other directions (No.crt.11). 

Eliminating these situations, I obtained an altimetric RMSE of 0.63m. 
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      The 3D RMSE is calculated based on the three RMSE of the coordinates. 

𝜎3𝐷 = √𝜎𝑋
2 + 𝜎𝑌

2 + 𝜎𝐻
2 = 0.73𝑚  

     From the literature, the 3D accuracy of the points in the 3D building models with LoD2 is 

2 meters (Jokela, 2016), therefore, it can be said that the 3D RMSE obtained on the analysed 

data set (0.73 meters) falls within the standards in the field.  

      Considering all the steps taken, and the results obtained in Chapters 4 and 6, the 

workflow proposed from the unclassified point clouds to the 3D building models is displayed 

in Figure 6.15. 

 

Figure 6.15 Proposed workflow for 3D building models generation 
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7.  Generation and online distribution of 3D 

building models for the city of Arad 

 

7.1. Introduction and purposes 

     3D building modelling for an entire city can provide useful data for the municipality. The 

workflow presented in Chapter 6 can lead to a correct and consistent generation of 3D 

models. To exemplify modelling at the city scale, I used the national database TopRo5 and 

data related to the building’s height extracted from the LAKI II project. 

 

7.2. 3D building models for the city of Arad 

7.2.1.  Input data 

     As input data for the 3D building modelling for the city of Arad, I used: 

 the feature class BUILDINGS from the TopRo5 database; 

 DTM and DSM from the LAKI II Project. 

     TopRo5 is Romania's reference topographic map in digital format, corresponding to the 

scale 1: 5000. It was populated with data and is constantly updated within the National 

Center of Cartography, currently being at version 6 (CNC, 2020a).  The data is mostly 

digitized on the orthophotos. Additionally, external sources are used, such as the buildings 

contours from the eTerra  application (ANCPI, 2021), vector data output from other projects 

in Romania. 

7.2.2.  Data set processing     

     The first filtering of the elements extracted from TopRo5 was the elimination of buildings 

with areas smaller than 20m2, resulting in 50390 building polygons. 

      Based on DMS and DTM, I generated, in the Global Mapper software, the nDSM, using 

the tool Combine/Compare Terrain Layers. All 23 nDSM models contain above-ground 

points and were exported at a spatial resolution of 1m (Figure 7.1). 

     Even if there is a time difference between the photogrammetric data acquisition (2016) 

and the LiDAR acquisition (2017), over 90% of the buildings do not show changes over time 

that may affect the 3D modelling. 
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Figure 7.1 Detailed view of a nDSM tile                                  Figure 7.2 Centroid building points with the         
     attribute height 

     For all the buildings polygons, I generated centroid points, to which I transferred the 

height from the normalized model of the surfaces (figure 7.2). Following a brief analysis of 

the values transferred from nDSM, I found that some centroid points have a height value 

equal to 0m and decided to do a thorough check at the tile level. From the analyses 

performed, heights of 0 meters were found for 1119 centroid points. Therefore, these 

buildings were either demolished, or their digitization was not done exactly with the real 

situation in the field (figure 7.4). 6669 buildings have heights smaller than 2 meters and I 

considered them annex buildings and removed them from future analyses (figure 7.3) 

 
 

Figure 7.3 Statistical analysis of building heights 

      

 

 

 

 

 

 

 

 

 
Figure 7.4 buildings with height equal to 0 m 

(a) demolished building; (b) improper digitized building     
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7.2.3.  3D building models generation in CityEngine 

          Based on the buildings footprints, with the corresponding height attribute, the DTM, 

and the CGA rules, I generated, in CityEngine, the 3D building models for the city of Arad. 

Starting with the 42602 2D buildings polygons, after applying the modelling process 525613 

3D faces resulted (figures 7.5). By setting the roof angle to 0°, I generated block-type 

buildings with flat roofs for all buildings in Arad. It should be noted that churches and other 

buildings with complex shapes were not treated differently from the rest, their 3D models 

will not be in line with the real 3D shape. 

 

Figure 7.5 Overview - 3D building models for Arad  

7.2.4.  Quality evaluation of the 3D models generated for Arad 

     I chose to conduct a comparative study between the 3D models generated in Chapter 6 

and the models obtained in this chapter. The analysis of the distances from 3D models to 

the point cloud (only the roof  class) was performed in CloudCompare, using the 

Cloud/Mesh Distances tool. Following the evaluation, statistical data were obtained, based 

on the approximate distances for 147565 points (table 7.1). Thus, the standard deviation in 

the case of models generated based on footprints from TopRo5 is 1.57m, compared to 

1.08m for the situation of models derived only from LiDAR data. 

3D building models Average distance  (m) Standard deviation (m) 

Derived from LiDAR data 0.26 1.08 

Generated based on 

footprints from TopRo5 
0.42 1.57 

Table 7.1 Quality analysis 
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     The two sets of 3D building models are also differentiated by the number of polygonal 

faces resulting from the generation: 1187 faces - model from TopRo5 and 3084 faces  - 

model generated from LiDAR data (figure 7.6). 

      Based on the analyses presented above, I can conclude that the models generated only 

from LiDAR data, through the workflow proposed in Chapter 6, provide superior quality 

results. 

 

       

 

 

 

 

 

 

 

 

 

 

 
Figure 7.6 3D building models 

(a) derived exclusively from LiDAR data; (b) generated based on footprints from TopRo5 

 

7.3. Online distribution of 3D building models 

7.3.1.  ArcGIS Online and CityEngine WebViewer 

     ArcGIS Online is a software-available-as-a-service (SaaS) that provides the user with a 

series of tools for mapping and analysing 2D and 3D data (ESRI, 2021). 

7.3.2.  Data distributed online 

     Based on the documentation started during the writing of the article about 2D maps and 

web applications for Oradea city (Pârvu I. M., Cuibac Picu, Dragomir, & Pantan, 2021), I 

decided to continue studying the capabilities of ArcGIS Online  in working with 3D data. In 

this sense, I exported the scene from CityEngine, which contained the 3D building models 

for the city of Arad and the ground represented by the DTM, in CityEngine WebScene format. 
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The new file must be stored on the ArcGIS Online platform via the Share As option. Then, 

the data is available in the Content tab of ArcGIS Online and can be viewed and analysed in 

the CityEngine Web Viewer software (figure 7.7). 

 
Figure 7.7 3D building models in CityEngine WebViewer 
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8. General conclusions, original contributions, 

and future perspectives 

 

8.1. General conclusions 

     Conclusions on the acquisition of geospatial data by remote sensing and aerial 

photogrammetry 

    In terms of LiDAR technology, conventional linear scanners offer clear performance and, 

with the technological evolution offered by SPL and Geiger-mode scanners, capabilities and 

productivity have increased considerably. From the analysis of the performances of the 

three types of LiDAR instruments (linear scanners, SPL and Geiger-mode), it is observed that 

the scanning rate of a SPL system is 3 times higher than that of a linear system, and the 

scanning rate of a Geiger-mode system is 2 times larger than of a SPL system.  

     For every project, LiDAR scanning or aerial photogrammetry, the planning part is 

extremely important, and if this stage is not treated seriously, the data processing can be 

much difficult or even impossible to accomplish.  

     Point cloud processing workflow involves data calibration, strip adjustment, 

transformation into the coordinate system and point cloud classification. ASPRS defined, in 

2019, the latest version of the LAS file, version 1.4, with 256 classes. Depending on the type 

of project, it is necessary to identify the optimal classes to use in the classification process. 

One should know, that a large number of classes complicates the classification process and 

increases confusion between classes (Pârvu I. M., Cuibac Picu, Dragomir, & Poli, 2020). 

    Currently, top photogrammetric cameras, produced by companies such as Leica 

Geosystems, Vexcel Imagine, are used. These can take nadir and oblique images. Compared 

to traditional photogrammetry, oblique imaging technology offers several advantages, such 

as: very good visibility of facades, multiple views and easy interpretation of buildings. The 

disadvantages of using oblique images are the different lighting of objects, the different 

spatial resolutions within the images and the increased hardware-software requirements. 

The most common configuration for oblique cameras is Maltese-cross. 

     In this thesis, I have detailed the photogrammetric workflow, presenting the latest 

information related to the production of true orthophotos from oblique images. Regarding 

the extraction of tie points from oblique images, the process is extremely laborious and 

computationally demanding. Using the SIFT operator facilitated the extraction process. 

     With images with a spatial resolution of 10 cm, the resulting dense point cloud (DIM) from 

nadir images has a density of 100 points/m2, compared to the DIM obtained from nadir and 

oblique images that provide a triple density because of the points on the facades of 
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buildings. Even if the point cloud is much denser, problems arise because of the high 

percentage of noise points. To reduce this effect, 80% forward and side overlaps. 

      For the precise extraction of buildings in a semi-automatic or automatic way, the true 

orthophoto is the optimal choice, because the artificial objects are positioned correctly on 

the ground and the obstructed areas are eliminated. 

     Conclusions regarding the classification of LiDAR point clouds and the semantic 

segmentation of orthorectified images 

      I analyzed the segmentation methods of point clouds, starting with edge-based 

segmentation, continuing with region-based segmentation, arriving at model fitting methods 

and ending with Machine learning-based segmentation. 

     Starting with the basic workflow for the supervised classification of point clouds, I 

developed my workflow. The first step consists in selecting the neighborhood, based on 

which the eigenfeatures of the points will be computed. In the literature are used the 

following ways of selecting the neighborhood: choosing the value of the radius of the sphere 

or cylinder that determines the neighborhood around the point and choosing/computing the 

value of K nearest neighbors. Analyzing the options, I decided that using the number of K 

nearest neighbors is the optimal choice. In this sense, I proposed and implemented in a C++ 

code the use of the dynamic neighborhood of K, based on the region growing algorithm. 

Thus, each point will have its own K number of neighbors, depending on the similarity 

measurements typical of the region-based segmentation method. 

     The most well-known local 3D features are abstract eigenfaetures, which are determined 

based on the eigenvalues. Thus, I developed a C++ code for computing features, such as 

linearity, planarity, sphericity, anisotropy. Besides these 3D features described in the 

literature, I have defined several features, of which the N2 feature has proven relevant in the 

classification process. 

      In the supervised classification, the assignment of the class is done by learning the 

model based on a set of training data and by running the model created on the entire data 

set. The training data set must represent the data very well and its classification must be 

extremely precise. The testing data set is used to assess the quality of the classification. 

Both data sets can be classified manually, automatically or by the crowdsourcing method. 

     The Weka software, developed by the University of Waikato, New Zealand, has 

implemented a collection of Machine learning algorithms for solving large-scale data 

extraction patterns with applications in banking, diagnostics, marketing and sales. In the 

thesis, I used this software for the supervised classification of LiDAR point clouds. 

      In the tests performed, I started the analysis using three classes (ground, vegetation  and 

roof ), but the classification results had very low quality indicators, because all points such 

as power lines, cars, fences, were classified in one of the 3 classes mentioned. Thus, I 
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included the other  class, which contains points that do not belong to the ground, vegetation 

or roof class. 

     From the analyses regarding the time required to create and test the model for the 7 

classifiers run in the Weka software, the longest time was required for the IBk classifier (1 

hour and 45 minutes) and the shortest, for the Naive Bayes classifier (9 seconds) . The 

Random Forest classifier created and tested the model in just 7 minutes. 

      The ranking, in terms of classification quality indicators, is: 1st place - SMO, 2nd place - 

Random Forest and 3rd place - Naive Bayes. The overall classification accuracy obtained by 

these classifiers is approximately 93%. Analyzing the quality indicators for the roof  class, I 

demostrated that the Random Forest and SMO methods offer the best results, with values 

of the F1 score of approximately 93%. 

      After all the tests, I can say that Weka is a high-performance work environment and 

allows the precise classification of point clouds.   

   Regarding the extraction of the buildings footprints from orthorectified images, I analyzed 

the semantic segmentation based on Machine learning algorithms (Maximum Likelihood, 

Random Trees and SVM) and on Deep Artificial Neural Networks, in ArcGIS Pro. Even though 

the semantic segmentation quality indicators were close, for the Machine learning tests, 

SVM generated the best results. In order to increase the quality of the classification, I 

introduced, as auxiliary data,  the DSM. Thus, the overall accuracy of the classification 

reached 93.9%, and the buildings  class generated a F1 score of 93.3%, with 7% better than 

the approach without DSM.  

     I tested the ANN capabilities using the U-Net network with the ResNet architecture and 

ran the classification on CPU. The results obtained for the BUILDINGS  class, using 

ResNet34 and ResNet50 were similar, observing a small decrease in precision (2.5%) and a 

slight increase in recall (5%). For the only class created, BUILDINGS, I obtained using 

ResNet34, the precision of 90.4%, the recall of 62.7% and the F1 score of 73.8%. The time 

required to create the ResNet50 model was 15 hours, 7 times longer than the one needed to 

dreate the ResNet34. 

     I recommend the use of graphics processing units (GPUs), which reduces the processing 

time. 

     Unfortunately, the resulting buildings footprints cannot be used in the process of 

generating 3D building models, because the orthorectified image used is an orthophoto, 

where most buildings appear tilted in the image. Therefore, in order to automatically extract 

the outline of buildings, it is recommended to classify true orthophotos.    
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      Conclusions on 3D building modeling  

     The need to move from 2D maps to 3D models is important, both in terms of alignment 

with international standards and the usefulness of applications such as: estimating the 

potential of solar energy, estimating the energy requirements for individual buildings, 

prompt response to emergencies and study of the impact of floods, earthquakes. 

      Some countries that represent international models to follow in terms of 3D modelling 

are the Netherlands, Singapore, Switzerland, Estonia. In these countries, were developed 3D 

models for all buildings, using LoD1 or LoD2, and the data was published as open data on 

national portals. I believe Romania can and must move to the generation of 3D building 

models for its cities. The studies and results that I presented in this thesis can be the basis 

of a new national project of 3D building modelling. 

     In the case study, I started from the point clouds previously classified and extracted the 

buildings footprints, without manual intervention. I developed a Python code, in which I 

calculated the normals and applied the segmentation based on region growing, using the 

two approaches: conditional clustering and plane extraction. The buildings footprints were 

extracted using the alpha shape algorithm. The proposed workflow for the transition from 

segmented polygons to the regularised buildings footprints was done in ArcGIS Pro. 

     I tested the 3D building models generation in two software: 3dfier and CityEngine. 

     In 3dfier, I introduced the buildings footprints, the point cloud consisting points on the 

ground  and on roofs, and the updated configuration file. The result was an obj file with 3D 

building models (LoD1). 

     Running the modelling process in CityEngine requires height information of the buildings. 

I extracted these data based on the generated nDSM, using the following approaches: based 

on the centroid points of the buildings footprints and based on characteristic points on the 

roof, much closer to its lower edges. From the analyses performed, the approach that used 

the characteristic points generated the best results. I generated the 3D building models 

(LoD2) based on the CGA rules, such as the type of roof, its angle of inclination, the texture 

that will be used for building facades. 

     For the quality assessment of the 3D models, I evaluated the planimetric and altimetric 

component. The planimetric RMSE was 0.38 meters. The altimetric RMSE was 1.55 meters. 

From the detailed analysis of the situations that generated this big value, I can say that some 

points are located on buildings with different types of roof than the one used by the CGA 

rules (flat, not inclined) or with a sloped roof in another direction. By removing these points 

from the computation, an altimetric RMSE of 0.63m is obtained. From the literature, the 3D 

accuracy in the 3D building models (LoD2) is 2 meters, therefore, I can state that the 3D 

RMSE obtained on the analysed data set (0.73 meters) falls within the standards in the field. 
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      It is important to remember that the 3D building models are not exactly like in reality, but 

in order to have an excellent quality, they must be up-to-date, consistent and without 

topological or semantic errors. 

     In Chapter 7, I generated 3D models of buildings based on the data from the national 

database (TopRo5 - 2016) and the heights from nDSM (from the LAKI II Project - 2017). If 

the buildings had been digitized based on the orthophotos in LAKI II Project, then a 1: 1 

correspondence could be made between the digitized buildings and the buildings in nDSM. 

This improvement would have allowed 3D modelling of all the buildings and would have led 

to an increase in the 3D accuracy of the models.  

     I set the angle of the roofs to 0°, which led to the generation of 3D block-type models, 

with flat roofs, for all buildings on the surface of the municipality.  

     Comparing the models generated only from LiDAR data, through the workflow proposed 

in Chapter 6, with the models resulted based on the buildings footprints from the national 

database and the heights from nDSM, I can conclude that: 

• models generated only from LiDAR data offer superior results in terms of quality; 

• models generated based on the data from the national database can successfully 

generate 3D models of buildings with the level of detail LoD1 and a standard deviation 

of about 1.5 meters. 

       The 3D building models generated for the city of Arad are stored in the ArcGIS Online 

platform, at https://bit.ly/3fzndY2, but I did not publish them as open data because of the 

copyright on the raw data. 

      3D building models of high quality can be obtained by topologically correcting the 

footprints, by including attributes that contain information about the type of roof, the slope, 

etc. for every building and by segmenting buildings with several levels of height. 

 

 

8.2. Original contributions 

   The major topics of my thesis, namely the automatic extraction of geospatial data and 3D 

modelling, are of great interest because they present current problems in our field of 

research. As personal contributions I can mention: 

o Performing a detailed analysis of the latest technological achievements in terms of 

equipment and data processing for aerial laser scanning and aerial photogrammetry; 

o Performing the quality control of the data from the LAKI II project, from the planning 

stage to the generation of the final products; 

o Use of the most current LiDAR data set at the national level; 
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o Carrying out a detailed analysis of the methods for classifying point clouds, focusing 

on the latest achievements; 

o Carrying out a detailed analysis of the methods of semantic segmentation of images, 

emphasizing Machine learning techniques and deep neural networks architectures; 

o Implementation of the region growing method for the dynamic selection of the 

neighborhood, to perform the supervised classification of point clouds; 

o Use of Weka software for supervised classification of point clouds and comparative 

analysis of the machine learning algorithms implemented; 

o Making the workflow from the polygons segmented in the OPALS software to the 

footprints of the regularised buildings; 

o Transfer of building height values from nDSM using the approaches: based on the 

centroid points of the footprints and based on characteristic points on the roof, much 

closer to the lower edges of the roof; 

o Development of a workflow for generating 3D building models using only LiDAR data; 

o Generation of 3D models for all the building in Arad. 

 

 

8.3. Future perspectives 

     The studies carried out in this thesis can be continued. I will mention some future 

research directions: 

o Extracting the buildings footprints using the proposed workflow and generating the 3D 

building models, only from LiDAR data, for the entire surface of Arad; 

o Including more attributes to the buildings, to generate, in CityEngine, roofs following 

their actual shape in the field; 

o Extracting buildings footprints from true orthophotos and analysing in comparison the 

results with the footprints extracted from LiDAR data.      
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